์˜ค์ผ๋Ÿฌ ๋ฐฉ๋ฒ•์„ ๊ฐœ์„ ํ•œ ํ›„๋ฐฉ ์˜ค์ผ๋Ÿฌ ๋ฐฉ๋ฒ•๊ณผ ์‚ฌ๋‹ค๋ฆฌ๊ผด ๋ฐฉ๋ฒ•. ๊ทธ๋ฆฌ๊ณ  ์ด ๋ฐฉ์‹๋“ค์˜ ์˜ค์ฐจ์™€ ์ •ํ™•๋„์— ๋Œ€ํ•ด์„œ.

4 minute read

์ˆ˜ํ•™๊ณผ ๋ณต์ˆ˜์ „๊ณต์„ ์œ„ํ•ด ์กธ์—… ๋งˆ์ง€๋ง‰ ํ•™๊ธฐ์— โ€œ์ˆ˜์น˜ํ•ด์„๊ฐœ๋ก โ€ ์ˆ˜์—…์„ ๋“ฃ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ˆ˜ํ•™๊ณผ ์กธ์—…์‹œํ—˜๋„ ๊ฒธ์‚ฌ๊ฒธ์‚ฌ ์ค€๋น„ํ•  ๊ฒธ ํ™”์ดํŒ… ํ•ด๋ด…์‹œ๋‹ค!! ์ „์ฒด ํฌ์ŠคํŠธ๋Š” โ€œNumerical Analysisโ€œ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋“ค์–ด๊ฐ€๋ฉฐ

Backward Euler Method

์˜ค์ผ๋Ÿฌ ๋ฐฉ๋ฒ•์—์„œ๋Š” ๋ฏธ๋ถ„๋ฐฉ์ •์‹์„ ๊ธฐ์šธ๊ธฐ ๊ทผ์‚ฌ๋ฅผ ํ†ตํ•ด ์•„๋ž˜์™€ ๊ฐ™์ด ํ‘œํ˜„ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

\[\frac{u_{n+1} - u_n}{k} = f(t_n, u_n)\]

์ด๋ฒˆ์—๋Š” ์ด๊ฒƒ์„ ๋ฐ”๊ฟ”์„œ ์•„๋ž˜์™€ ๊ฐ™์ด ์ ์–ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค!

\[\frac{u_{n+1} - u_n}{k} = f({\color{red}t_{n+1}}, {\color{red}u_{n+1}})\]

์ขŒ๋ณ€์€ ๋™์ผํ•˜์ง€๋งŒ, ์šฐ๋ณ€์—์„œ $n$ ์Šคํ…์˜ ๊ฐ’์ด ์•„๋‹ˆ๋ผ $(n+1)$ ์Šคํ…์˜ ๊ฐ’์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค!

๋จผ์ € ์‚ดํŽด๋ณธ ์˜ค์ผ๋Ÿฌ ๋ฐฉ์‹๊ณผ ์ด๋ฅผ ๊ตฌ๋ถ„ํ•˜๊ธฐ ์œ„ํ•ด ๋จผ์ € ์‚ดํŽด๋ณธ ๊ฒƒ์„ โ€œ์ „์ง„ ์˜ค์ผ๋Ÿฌ ๋ฐฉ๋ฒ•โ€, ์ด๋ฒˆ ๊ฒƒ์„ โ€œ์šฐํžŒ ์˜ค์ผ๋Ÿฌ ๋ฐฉ๋ฒ•โ€์ด๋ผ๊ณ  ํ‘œํ˜„ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

๊ทธ๋ฆฌ๊ณ  ์ด ์‹์„ ์ •๋ฆฌํ•˜๋ฉด,

\[u_{n+1} = u_n + k f(t_{n+1}, u_{n+1})\]

์œ„์˜ ์‹์€ ์–‘๋ณ€์— $u_{n+1}$๊ฐ€ ์กด์žฌํ•˜๋Š” โ€œimplicitโ€ ํผ์„ ๊ฐ€์ง‘๋‹ˆ๋‹ค. ์ด๊ฒƒ์„ ํ’€๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ฐฉ์ •์‹์˜ ํ•ด๋ฅผ ์ฐพ์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์‹์„ ๋‹ค์‹œ $g(u)$๋กœ ์ •๋ฆฌํ•ฉ๋‹ˆ๋‹ค.

\[g(u) = u - k f(t_{n+1}, u) - u_n = 0\]

์–ด๋ผ? ์ด๊ฒƒ ์ข€ ์ต์ˆ™ํ•œ ํ˜•ํƒœ ์ž…๋‹ˆ๋‹ค! ใ…Žใ…Ž ๋ฐ”๋กœ ์ˆ˜์น˜ํ•ด์„ ์ˆ˜์—…์˜ ์ „๋ฐ˜๋ถ€์— ๋‚˜์™”๋˜ โ€œroot-findingโ€ ๋ฐฉ์‹์ธ โ€œ๋‰ดํ„ด ๋ฐฉ๋ฒ•โ€ ์ž…๋‹ˆ๋‹ค!

๋ฐ˜๋ณต๋ฒ•์„ ์‚ฌ์šฉํ•ด์„œ $g(u) = 0$์„ ๋งŒ์กฑํ•˜๋Š” $u$๋ฅผ ์ฐพ์œผ๋ฉด, ๊ทธ๊ฒƒ์ด $u_{n+1}$์˜ ๊ฐ’์ด ๋ฉ๋‹ˆ๋‹ค!


์ „์ง„ ์˜ค์ผ๋Ÿฌ ๋ฐฉ์‹๊ณผ ๋น„๊ตํ•˜๋ฉด, ํ›„์ง„ ์˜ค์ผ๋Ÿฌ ๋ฐฉ์‹์€ $u_{n+1}$๋ฅผ ๊ตฌํ•˜๋Š” ๊ณผ์ •์ด ๋ณต์žกํ•ด๋ณด์ž…๋‹ˆ๋‹ค. ๋”ฑ ๋ด๋„ $g(u) = 0$์„ ๊ตฌํ•ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ณ„์‚ฐ๋Ÿ‰์ด ๋” ๋งŽ๊ณ , ๊ตฌํ˜„์ด ๋ณต์žก ํ•ฉ๋‹ˆ๋‹ค.

ํ•˜์ง€๋งŒ, ์ „์ง„ ์˜ค์ผ๋Ÿฌ์— ๋น„ํ•ด ํ›„์ง„ ์˜ค์ผ๋Ÿฌ ๋ฐฉ์‹์ด ๋” ์•ˆ์ •์ ์ด๊ณ , ์ „์ง„ ์˜ค์ผ๋Ÿฌ ๋ฐฉ์‹์ด ๊ฐ–๋Š” stiff ๋ฌธ์ œ์— ๊ฐ•๊ฑดํ•˜๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

Trapezoid Method

์ด๋ฒˆ์—๋Š” ์ „์ง„ ์˜ค์ผ๋Ÿฌ์™€ ํ›„์ง„ ์˜ค์ผ๋Ÿฌ ๋ฐฉ์‹์˜ ํ‰๊ท ์„ ์‚ฌ์šฉํ•˜๋Š” โ€œimplicitโ€ ๋ฐฉ์‹ ์ž…๋‹ˆ๋‹ค.

\[\frac{u_{n+1} - u_n}{k} = \frac{f(t_n, u_n) + f(t_{n+1}, u_{n+1})}{2}\]

์ˆ˜์‹์„ ์ •๋ฆฌํ•˜๋ฉด,

\[u_{n+1} = u_n + \frac{k}{2} \left( f(t_n, u_n) + f(t_{n+1}, u_{n+1}) \right)\]

์ด๋•Œ๋„ $u_{n+1}$์ด ์–‘๋ณ€์— ํฌํ•จ๋˜์–ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, root-finding์œผ๋กœ ๋ฐฉ์ •์‹์„ ํ’€์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

One-step Method

์ง€๊ธˆ๊นŒ์ง€ ์‚ดํŽด๋ณธ, ์ „์ง„ ์˜ค์ผ๋Ÿฌ ๋ฐฉ์‹, ํ›„์ง„ ์˜ค์ผ๋Ÿฌ ๋ฐฉ์‹, ์‚ฌ๋‹ค๋ฆฌ๊ผด ๋ฐฉ์‹ ๋ชจ๋‘ $u_{n+1}$๋ฅผ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ”๋กœ ์ง์ „ ๊ฐ’์ธ $u_n$ ๋งŒ์„ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๊ฒƒ๋ณด๋‹ค ๊ณผ๊ฑฐ์˜ ๋” ์ด์ „ ๊ฐ’๋“ค์€ ํ•„์š”ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.

๊ทธ๋ž˜์„œ ์ด 3๊ฐ€์ง€ ๋ฐฉ์‹์„ ๋ชจ๋‘ โ€œone-stepโ€ method ๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค!

์ง€๊ธˆ๊นŒ์ง€ ์‚ดํŽด๋ณธ one-step method์˜ ์ˆ˜์‹์„ ์ผ๋ฐ˜ํ™” ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\[u_{n+1} = u_n + k \Phi\]

์ด๋•Œ, $\Phi$๋Š” ์–ด๋˜ ํ•จ์ˆ˜๋กœ ๊ฐ ๋ฐฉ๋ฒ•๋งˆ๋‹ค ๋‹ค๋ฅด๊ฒŒ ์ •์˜ ๋ฉ๋‹ˆ๋‹ค.

  • ์ „์ง„ ์˜ค์ผ๋Ÿฌ
    • $\Phi = f(t_n, u_n)$
  • ํ›„์ง„ ์˜ค์ผ๋Ÿฌ
    • $\Phi= f(t_{n+1}, u_{n+1})$
  • ์‚ฌ๋‹ค๋ฆฌ๊ผด ๋ฐฉ๋ฒ•
    • $\Phi = (f(t_n, u_n) + f(t_{n+1}, u_{n+1}))/2$

Consistent btw Numerical and Analytical

์ˆ˜์น˜์  ๋ฐฉ๋ฒ•์œผ๋กœ ๊ตฌํ•œ ์†”๋ฃจ์…˜์ด ํ•ด์„์  ๋ฐฉ๋ฒ•์œผ๋กœ ๊ตฌํ•œ ์†”๋ฃจ์…˜๊ณผ ์ผ์น˜(consistent)ํ•˜๊ฒŒ ๋˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์•„๋ž˜์˜ ์กฐ๊ฑด์ด ํ•„์š” ํ•ฉ๋‹ˆ๋‹ค.

As $k \rightarrow 0$, $\tau_n \rightarrow 0$

์ฆ‰, ์‹œ๊ฐ„์˜ ๊ฐ„๊ฒฉ $k$๋ฅผ ์ค„์ผ ์ˆ˜๋ก ์˜ค์ฐจ๋„ ํ•จ๊ป˜ ์ค„์–ด๋“ค์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

Order of Accuracy

๊ตญ์†Œ ์˜ค์ฐจ์˜ ์˜ค์ฐจ ์ •ํ™•๋„๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ํ‘œํ˜„ ํ•ฉ๋‹ˆ๋‹ค.

\[\tau_n \approx C k^p\]

๋ผ๊ณ  ํ•˜๋ฉด, ์ด one-step method์˜ ์˜ค์ฐจ๋Š” $p$๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.

์ „์ง„/ํ›„์ง„ ์˜ค์ผ๋Ÿฌ ๋ฐฉ์‹์€ ์˜ค์ฐจ ์ •ํ™•๋„๊ฐ€ $k^1$๋กœ 1์ฐจ ์ •ํ™•๋„๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค.

๋ฐ˜๋ฉด์—, ์‚ฌ๋‹ค๋ฆฌ๊ผด ๋ฐฉ์‹์€ ์˜ค์ฐจ ์ •ํ™•๋„๊ฐ€ $k^2$๋กœ 2์ฐจ ์ •ํ™•๋„๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค.

๋งบ์Œ๋ง

one-step method๋Š” ํ…Œ์ผ๋Ÿฌ ๊ธ‰์ˆ˜ ์ „๊ฐœ์—์„œ 1์ฐจ ํ•ญ์„ ๋‚จ๊ฒจ์„œ ์ˆ˜์น˜์  ์ ‘๊ทผ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค.

๋งŒ์•ฝ, ๋” ๋งŽ์€ ํ•ญ์„ ๋‚จ๊ธฐ๋ฉด ์–ด๋–ป๊ฒŒ ๋ ๊นŒ์š”? ์™ ์ง€ ๋” ์ •ํ™•ํ•œ ์ˆ˜์น˜์  ์†”๋ฃจ์…˜์„ ์–ป์„ ๊ฒƒ ๊ฐ™์ง€ ์•Š๋‚˜์š”? ใ…Žใ…Ž

๋‹ค์Œ ํฌ์ŠคํŠธ์—์„œ๋Š” ์ด ์•„์ด๋””์–ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” โ€œTaylor Methodโ€์— ๋Œ€ํ•ด ์‚ดํŽด๋ด…๋‹ˆ๋‹ค!