5 minute read

์ˆ˜ํ•™๊ณผ ๋ณต์ˆ˜์ „๊ณต์„ ์œ„ํ•ด ์กธ์—… ๋งˆ์ง€๋ง‰ ํ•™๊ธฐ์— โ€œ์ˆ˜์น˜ํ•ด์„๊ฐœ๋ก โ€ ์ˆ˜์—…์„ ๋“ฃ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ˆ˜ํ•™๊ณผ ์กธ์—…์‹œํ—˜๋„ ๊ฒธ์‚ฌ๊ฒธ์‚ฌ ์ค€๋น„ํ•  ๊ฒธ ํ™”์ดํŒ… ํ•ด๋ด…์‹œ๋‹ค!! ์ „์ฒด ํฌ์ŠคํŠธ๋Š” โ€œNumerical Analysisโ€œ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋“ค์–ด๊ฐ€๋ฉฐ

์ด์ „ ํฌ์ŠคํŠธ์—์„œ $n$๊ฐœ ๋ฐ์ดํ„ฐ ๋…ธ๋“œ $\left\{ (x_i, y_i) \right\}$๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ, Least-square Method๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์‚ดํŽด๋ณด์•˜์Šต๋‹ˆ๋‹ค.

์ด๋ฒˆ ํฌ์ŠคํŠธ์—์„œ๋Š” ๋ฐ์ดํ„ฐ ๋…ธ๋“œ๊ฐ€ ์œ ํ•œํ•œ ๊ฐฏ์ˆ˜๊ฐ€ ์•„๋‹ˆ๋ผ ๊ตฌ๊ฐ„ $(a, b) \subseteq \mathbb{R}$๋กœ ์ฃผ์–ด์ง‘๋‹ˆ๋‹ค. ์ด ๊ตฌ๊ฐ„ ์œ„์—์„œ Least-square Method๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์„ โ€œContinuous LSโ€(์ดํ•˜ CLS)๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค!

Introduction

CLS์˜ ๋ชฉํ‘œ๋Š” ์–ด๋–ค ํ•จ์ˆ˜ $f(x)$๋ฅผ ํ•จ์ˆ˜ ์ง‘ํ•ฉ $\left\{ \phi_0(x), \phi_1(x), \dots, \phi_n(x) \right\}$์˜ ์„ ํ˜• ๊ฒฐํ•ฉ์œผ๋กœ ๊ทผ์‚ฌํ•˜๋Š” ๊ฒƒ ์ž…๋‹ˆ๋‹ค. ๋ณดํ†ต์€ ์ด ํ•จ์ˆ˜ ์ง‘ํ•ฉ์€ ๋‹คํ•ญ ํ•จ์ˆ˜์˜ ์ง‘ํ•ฉ $\left\{ 1, x, x^2, \dots, \right\}$ ์ž…๋‹ˆ๋‹ค.

\[f(x) \approx \sum_{j=0}^n c_j \phi_j(x)\]

์ด๋•Œ, ๊ณ„์ˆ˜ $c_j$๋Š” ์•„๋ž˜์˜ ์ œ๊ณฑ ์˜ค์ฐจ์˜ ์ ๋ถ„์„ ์ตœ์†Œํ™” ํ•˜๋Š” ๊ณ„์ˆ˜๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

\[SSE(\mathbf{c}) = \int_a^b \left(f(x) - \sum_{j=0}^n c_j \phi_j(x) \right)^2 w(x) \, dx\]

์ด๋•Œ, $w(x)$๋Š” ๊ฐ€์ค‘์น˜ ํ•จ์ˆ˜์ธ๋ฐ, ๋ณดํ†ต $w(x) = 1$๋กœ ๋‘๊ณ  ํ’‰๋‹ˆ๋‹ค.

Normal Equation

์ตœ์†Œ SSE๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด, ์ ๋ถ„์‹์„ ๊ฐ ๊ณ„์ˆ˜ $c_i$์— ๋Œ€ํ•ด ํŽธ๋ฏธ๋ถ„ํ•œ ๊ฐ’์„ 0์œผ๋กœ ๋‘๊ณ  ๋ฐฉ์ •์‹์„ ๊ตฌ์„ฑํ•ฉ๋‹ˆ๋‹ค.

\[\begin{aligned} \frac{\partial SSE}{\partial c_i} &= \int_a^b \left(f(x) - \sum_{j=0}^n c_j \phi_j(x) \right)^2 \, dx \\ &= 2 \int_a^b \left(f(x) - \sum_{j=0}^n c_j \phi_j(x) \right) \left(- c_i \phi_i(x)\right) \, dx = 0 \end{aligned}\]

์ด์ œ ์ด ๋“ฑ์‹์„ ์ •๋ฆฌํ•˜๋ฉด,

\[\int_a^b \left(f(x) - \sum_{j=0}^n c_j \phi_j(x) \right) \cdot \phi_i(x) \, dx = 0\]

์ขŒ์šฐ๋ฅผ ๋งž์ถฐ์ฃผ๋ฉด,

\[\int_a^b f(x) \cdot \phi_i(x) \, dx = \int_a^b \left(\sum_{j=0}^n c_j \phi_j(x)\right) \cdot \phi_i(x) \, dx\]

๊ทธ๋ฆฌ๊ณ  ์—ฌ๊ธฐ์—์„œ ์‹์„ ์ข€๋” ๋‹ค๋“ฌ์–ด์ฃผ๋ฉด,

\[\int_a^b f(x) \cdot \phi_i(x) \, dx = \sum_{j=0}^n c_j \cdot \left(\int_a^b \phi_j(x) \cdot \phi_i(x) \, dx\right)\]

์ขŒ/์šฐ๋ณ€์˜ ์˜๋ฏธ๋ฅผ ์‚ดํŽด๋ณด๋ฉด,

  • ์ขŒ๋ณ€
    • $f(x)$์™€ ๊ธฐ์ € ํ•จ์ˆ˜ $\phi_i(x)$์˜ ๋‚ด์ 
  • ์šฐ๋ณ€
    • ๊ณ„์ˆ˜ $c_j$์™€ ๊ธฐ์ € ํ•จ์ˆ˜๋“ค ์‚ฌ์ด์˜ ๋‚ด์ ์œผ๋กœ ๋งŒ๋“ค์–ด์ง„ ์„ ํ˜• ์‹œ์Šคํ…œ

์šฐ๋ณ€์ด ์™œ ์„ ํ˜• ์‹œ์Šคํ…œ์ด๋ƒ๋ฉด,

\[\sum_{j=0}^n c_j \cdot \left(\int_a^b \phi_j(x) \cdot \phi_j(x) \, dx\right) = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} \begin{bmatrix} \int_a^b \phi_0(x) \cdot \phi_i(x) \, dx \\ \int_a^b \phi_1(x) \cdot \phi_i(x) \, dx \\ \vdots \\ \int_a^b \phi_n(x) \cdot \phi_i(x) \, dx \end{bmatrix}\]

์ด๊ฒŒ ์ด๊ฑธ ํ–‰๋ ฌ ํ˜•ํƒœ๋กœ ์ •๋ฆฌํ•˜๋ฉด,

\[X \theta = \mathbf{y}\]
  • $X_{ij} = \int_a^b \phi_i(x) \phi_j(x) \, dx$
  • $\theta_i = \int_a^b f(x) \phi_i(x) \, dx$
  • $\mathbf{y} = [c_0, c_1, \dots, c_n]^T$

์ง๊ด€์ ์œผ๋กœ ์•Œ ์ˆ˜ ์žˆ๋Š” ์„ฑ์งˆ์€ ๊ธฐ์ € ํ–‰๋ ฌ์˜ ๋‚ด์ ์œผ๋กœ ๋งŒ๋“ค์–ด์ง€๋Š” ํ–‰๋ ฌ $X$๋Š” ํ•ญ์ƒ โ€œ๋Œ€์นญ ํ–‰๋ ฌโ€์ž…๋‹ˆ๋‹ค. (ํ•จ์ˆ˜) ๋‚ด์ ์€ ๋Œ€์นญ์ ์ธ ์„ฑ์งˆ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.

Example

์˜ˆ์ œ๋ฅผ ํ†ตํ•ด ์ต์ˆ™ํ•ด์ ธ๋ด…์‹œ๋‹ค. $f(x) = e^x$๋ฅผ $[0, 1]$ ๊ตฌ๊ฐ„์—์„œ 1์ฐจ ๋‹คํ•ญ์‹์œผ๋กœ ๊ทผ์‚ฌํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ์ฆ‰, $\tilde{f}(x) = c_0 + c_1 x$. ๊ฐ€์ค‘์น˜๋Š” ๊ฐ€์žฅ ๋‹จ์ˆœํ•œ $w(x) = 1$๋กœ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

๊ฐ€์žฅ ๋จผ์ € ๊ธฐ์ € ํ•จ์ˆ˜๋กœ ๋งŒ๋“œ๋Š” ํ–‰๋ ฌ์„ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค.

\[X_{ij} = \int_0^1 \phi_i(x) \phi_j(x) \, dx\] \[X = \begin{bmatrix} \int_0^1 1 \cdot 1 \, dx & \int_0^1 1 \cdot x \, dx \\ \int_0^1 1 \cdot 1 \, dx & \int_0^1 x \cdot x \, dx \end{bmatrix} = \begin{bmatrix} 1 & 1/2 \\ 1/2 & 1/3 \end{bmatrix}\]

๊ธฐ์ € ํ•จ์ˆ˜์™€ ์›๋ณธ ํ•จ์ˆ˜์˜ ๋‚ด์ ์ธ ๋ฒกํ„ฐ $\theta$๋„ ๊ตฌํ•ด๋ด…์‹œ๋‹ค.

\[\theta_i = \int_0^1 f(x) \phi_i(x) \, dx\] \[\theta = \begin{bmatrix} \int_0^1 e^x \cdot 1 \, dx \\ \int_0^1 e^x \cdot x \, dx \end{bmatrix} = \begin{bmatrix} e - 1 \\ 1 \end{bmatrix}\]

์ด์ œ ์„ ํ˜• ์‹œ์Šคํ…œ์„ ๋งŒ๋“ค์–ด๋ด…์‹œ๋‹ค.

\[\begin{bmatrix} 1 & 1/2 \\ 1/2 & 1/3 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix} = \begin{bmatrix} e - 1 \\ 1 \end{bmatrix}\]

์‹œ์Šคํ…œ์€ ๊ธฐ์กด์˜ ์ด์‚ฐ LS ๋ฐฉ์‹์œผ๋กœ ํ’€์–ด๋‚ด๋ฉด ๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฉด ๊ณ„์ˆ˜๋Š” $c_0 = 6e-8$, $c_1 = -6e+14$๋กœ ๋‚˜์˜ค๊ณ , ํ•จ์ˆ˜ $f(x) = e^x$์˜ ๊ตฌ๊ฐ„ $[0, 1]$์œ„์—์„œ ๊ทผ์‚ฌํ•œ 1์ฐจ ํ•จ์ˆ˜๋Š”

\[f(x) \approx (-6e+14) x + (6e-8)\]