2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

7 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

μš°λ¦¬κ°€ Group을 처음 μ ‘ν–ˆμ„ λ•Œλ₯Ό κΈ°μ–΅ν•˜λŠ”κ°€? 이 뢀뢄은 Ring에 λŒ€ν•œ μ •μ˜μ™€ μ†Œκ°œλ₯Ό 닀룬닀.


Definition. Ring

A ring $R$ is a non-empty set with two binary operations $+$, $\cdot$ s.t.

  • $(R, +)$ is an abelian group.
  • $(R, \, \cdot \,)$ is assoctiative, thus a semi-group.
  • $+$, $\cdot$ 사이에 distributive lawκ°€ 성립
\[\begin{aligned} (a+b) \cdot c &= a \cdot c + b \cdot c \\ a \cdot (b+c) &= a \cdot b + a \cdot c \end{aligned}\]


Definition. Commutative Ring

IF $a \cdot b = b \cdot a$ for $\forall a, b \in R$,

then a ring $R$ is a commutative.

단, κ³±μ…ˆμ— λŒ€ν•΄μ„œ abelian β€˜groupβ€™μž„μ„ 말할 순 μ—†μŒ!!
(multiplication의 κ΅ν™˜λ§Œ μ–ΈκΈ‰ν–ˆμ§€ multiplicative inverseλ₯Ό 보μž₯ν•˜μ§€λŠ” μ•ŠκΈ° λ•Œλ¬Έ!)

λ§Œμ•½ κ³±μ…ˆμ— λŒ€ν•΄ abelian을 λ§Œμ‘±ν•œλ‹€λ©΄, β€œFieldβ€œκ°€ 됨!!


Example.

\[\mathbb{Z}, \quad \mathbb{Q}, \quad \mathbb{R}, \quad \mathbb{C}\]
  • λͺ¨λ‘ $+$에 λŒ€ν•΄ abelian
  • λͺ¨λ‘ $\,\cdot\,$에 λŒ€ν•΄ abelian
  • λͺ¨λ‘ $+$, $\,\cdot\,$에 λŒ€ν•΄ distributive law 성립


Example. $M_n(\mathbb{R})$

\[M_n(\mathbb{R}) = \{ M \mid M \textrm{ is a } n \times n \textrm{ matrix with real entries}\}\] \[A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\]
  • $+$의 항등원: $O$; μ˜ν–‰λ ¬
  • $A$의 $+$에 λŒ€ν•œ 역원: λͺ¨λ“  entry에 negative
  • 뢄배법칙과 결합법칙도 성립!

ν•˜μ§€λ§Œ, $M_n(\mathbb{R})$은 non-commutative ring이닀!

$\exists \; A, B$ s.t. $AB \ne BA$

\[\begin{aligned} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} &= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} &= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \end{aligned}\]

이것은 $M_n(\mathbb{Z})$, $M_n(\mathbb{R})$, $M_n(\mathbb{C})$도 λ§ˆμ°¬κ°€μ§€μ΄λ‹€!


Example. $\mathcal{F}(\mathbb{R}, \mathbb{R})$ - (1)

\[\mathcal{F}(\mathbb{R}, \mathbb{R}) = \{ f \mid f \textrm{ is a function } \mathbb{R} \rightarrow \mathbb{R}\}\]
  • $\forall \; x \in \mathbb{R}$, $(f+g)(x) := f(x) + g(x)$
  • $\forall \; x \in \mathbb{R}$, $(f \cdot g)(x) := f(x) \cdot g(x)$

λ”°λΌμ„œ $\mathcal{F}(\mathbb{R}, \mathbb{R})$은 ring이 λœλ‹€!
κ²Œλ‹€κ°€ commutative ring이기도 함!


Example. $\mathcal{F}(\mathbb{R}, \mathbb{R})$ - (2)

  • $+$λŠ” μ—¬μ „νžˆ point-wise operation
  • $\;\cdot\;$μ—μ„œ ν•¨μˆ˜ 합성인 $\circ$둜 λ³€κ²½

  • 뢄배법칙이 μ„±λ¦½ν•˜λŠ”κ°€?
    • $(f+g)\circ h \overset{?}{=} f\circ h + g\circ h$
      • OK!
    • $f\circ(g+h) \overset{?}{=} f\circ g + f\circ h$
      • 성립 X!!
      • (λ°˜λ‘€) $f(x) = e^x$, $g(x) = x$, $h(x) = 2x$


Example. $n\mathbb{Z}$

$<n\mathbb{Z}, +, \cdot>$ is a commutative ring.


Example. $\mathbb{Z}_n$

\[<\mathbb{Z}_n, +_n, \cdot_n>\]
  • $+_n$: congruence addition modulo $n$
  • $\cdot_n$: congruence muliplication modulo $n$

일반적으둜 $\mathbb{Z}_n$은 commutative ring이 μ•„λ‹ˆλ‹€. ν•˜μ§€λ§Œ, λ§Œμ•½ $n$이 prime이라면, 쒋은 μ„±μ§ˆλ“€μ΄ λ“±μž₯함!!

$\mathbb{Z}_n$ is a commutative ring!


Example. Direct product of rings
$R_1$, $R_2$, $\cdots$, $R_n$ are rings

\[R_1 \times R_2 \times \cdots \times R_n\]
  • 각자의 $+$에 λŒ€ν•΄μ„œ abelian
  • 각자의 $\;\cdot\;$에 λŒ€ν•΄μ„œ assotiative

Theorem.

$R$ is a ring, THEN

  1. $0 \cdot a = a \cdot 0 = 0$
  2. $a(-b)=(-a)b=-(ab)$
  3. $(-a)(-b) = ab$


proof.

1. First we will show $0\cdot a = 0$.

\[\begin{aligned} 0 \cdot a &= (0+0)a = 0\cdot a + 0\cdot a \\ 0 \cdot a &= 0 \cdot a + 0 \cdot a \\ 0 \cdot a - (0 \cdot a) &= 0 \cdot a + 0 \cdot a - (0 \cdot a) \\ 0 &= 0 \cdot a \end{aligned}\]

λ”°λΌμ„œ $0\cdot a=0$이닀.

$a\cdot 0 = 0$에 λŒ€ν•΄μ„œλ„ λ™μΌν•œ λ°©λ²•μœΌλ‘œ μ§„ν–‰ν•˜λ©΄ λœλ‹€.

2. We will show $a(-b)=-(ab)$.

Check

\[\begin{aligned} a(-b) + ab &= a(-b + b) \\ &= a \cdot 0 \\ &= 0 \end{aligned}\]

λ”°λΌμ„œ $a(-b) + ab = 0$이고, 이에 따라 $a(-b) = -(ab)$.

3.

μ•žμ„œ 증λͺ…ν•œ 2번 μ„±μ§ˆμ— μ˜ν•΄ $(-a)(-b) = -(a(-b))$이닀.

2번 μ„±μ§ˆμ„ ν•œλ²ˆ 더 μ μš©ν•˜λ©΄, $-(a(-b)) = -(-(ab))$이닀.

λ”°λΌμ„œ $(-a)(-b) = -(-(ab))$이 λœλ‹€.

μ΄λ•Œ, μ—­μ›μ˜ 역원은 μžκΈ°μžμ‹ μ΄ λ˜λ―€λ‘œ, $-(-(ab)) = ab$이닀.

λ”°λΌμ„œ $(-a)(-b) = ab$.


Ring Homomorphism

Definition. Ring homomorphism

A map $\phi: R \rightarrow R$ is a ring homomorphism, IF

(1) $\phi(a+b) = \phi(a) + \phi(b)$, $\forall \; a, b \in R$; (abelian) group homomorphism

(2) $\phi(ab) = \phi(a)\phi(b)$, $\forall \; a, b \in R$; semi-group homomorphism


Note. 1-1 Ring homomorphism

\[\ker \phi = \{0\} \iff \phi \textrm{ is 1-1}\]


Example.
For fixed $a\in R$, define $\phi_a$ as

\[\begin{aligned} \phi_a : \mathcal{F}(\mathbb{R}, \mathbb{R}) &\longrightarrow R \\ f &\longmapsto f(a) \end{aligned}\]

즉, ν•¨μˆ˜ $\phi_a$λŠ” κ°’ $a$에 λŒ€ν•œ evaluation mappingμž„.

THEN, $\phi_a$ is a homomorphism.

  • $\phi_a(f+g) = (f+g)(a) = f(a) + g(a) = \phi_a(f) + \phi_a(g)$
  • $\phi_a(fg) = (fg)(a) = f(a)g(a) = \phi_a(f)\phi_a(g)$



Ring Isomorphism

Definition. Ring Isomorphism

A function $\phi: R \longrightarrow R’$ is a ring isomorphism, IF

(1) $\phi$ is 1-1 & onto.

(2) $\phi$ is a ring homomorphism.


Note. inverse of Ring Isomorphism

IF $\phi$ is a ring isomorphism, THEN $\phi^{-1}$ is also a ring isomorphism.



μš°λ¦¬κ°€ μ„±μ§ˆ λ³„λ‘œ Group을 λΆ„λ₯˜ν–ˆλ“―이 Ring을 더 μžμ„Ένžˆ λΆ„λ₯˜ν•΄λ³΄μž.

Ring (part 2)μ—μ„œλŠ” Ring을 더 μžμ„Έν•˜κ²Œ λΆ„λ₯˜ν•œλ‹€!