Ring - 1
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
μ°λ¦¬κ° Groupμ μ²μ μ νμ λλ₯Ό κΈ°μ΅νλκ°? μ΄ λΆλΆμ Ringμ λν μ μμ μκ°λ₯Ό λ€λ£¬λ€.
Definition. Ring
A ring $R$ is a non-empty set with two binary operations $+$, $\cdot$ s.t.
- $(R, +)$ is an abelian group.
- $(R, \, \cdot \,)$ is assoctiative, thus a semi-group.
- $+$, $\cdot$ μ¬μ΄μ distributive lawκ° μ±λ¦½
Definition. Commutative Ring
IF $a \cdot b = b \cdot a$ for $\forall a, b \in R$,
then a ring $R$ is a commutative.
λ¨, κ³±μ
μ λν΄μ abelian βgroupβμμ λ§ν μ μμ!!
(multiplicationμ κ΅νλ§ μΈκΈνμ§ multiplicative inverseλ₯Ό 보μ₯νμ§λ μκΈ° λλ¬Έ!)
λ§μ½ κ³±μ μ λν΄ abelianμ λ§μ‘±νλ€λ©΄, βFieldβκ° λ¨!!
Example.
- λͺ¨λ $+$μ λν΄ abelian
- λͺ¨λ $\,\cdot\,$μ λν΄ abelian
- λͺ¨λ $+$, $\,\cdot\,$μ λν΄ distributive law μ±λ¦½
Example. $M_n(\mathbb{R})$
- $+$μ νλ±μ: $O$; μνλ ¬
- $A$μ $+$μ λν μμ: λͺ¨λ entryμ negative
- λΆλ°°λ²μΉκ³Ό κ²°ν©λ²μΉλ μ±λ¦½!
νμ§λ§, $M_n(\mathbb{R})$μ non-commutative ringμ΄λ€!
$\exists \; A, B$ s.t. $AB \ne BA$
\[\begin{aligned} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} &= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} &= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \end{aligned}\]μ΄κ²μ $M_n(\mathbb{Z})$, $M_n(\mathbb{R})$, $M_n(\mathbb{C})$λ λ§μ°¬κ°μ§μ΄λ€!
Example. $\mathcal{F}(\mathbb{R}, \mathbb{R})$ - (1)
- $\forall \; x \in \mathbb{R}$, $(f+g)(x) := f(x) + g(x)$
- $\forall \; x \in \mathbb{R}$, $(f \cdot g)(x) := f(x) \cdot g(x)$
λ°λΌμ $\mathcal{F}(\mathbb{R}, \mathbb{R})$μ ringμ΄ λλ€!
κ²λ€κ° commutative ringμ΄κΈ°λ ν¨!
Example. $\mathcal{F}(\mathbb{R}, \mathbb{R})$ - (2)
- $+$λ μ¬μ ν point-wise operation
-
$\;\cdot\;$μμ ν¨μ ν©μ±μΈ $\circ$λ‘ λ³κ²½
- λΆλ°°λ²μΉμ΄ μ±λ¦½νλκ°?
- $(f+g)\circ h \overset{?}{=} f\circ h + g\circ h$
- OK!
- $f\circ(g+h) \overset{?}{=} f\circ g + f\circ h$
- μ±λ¦½ X!!
- (λ°λ‘) $f(x) = e^x$, $g(x) = x$, $h(x) = 2x$
- $(f+g)\circ h \overset{?}{=} f\circ h + g\circ h$
Example. $n\mathbb{Z}$
$<n\mathbb{Z}, +, \cdot>$ is a commutative ring.
Example. $\mathbb{Z}_n$
- $+_n$: congruence addition modulo $n$
- $\cdot_n$: congruence muliplication modulo $n$
μΌλ°μ μΌλ‘ $\mathbb{Z}_n$μ commutative ringμ΄ μλλ€. νμ§λ§, λ§μ½ $n$μ΄ primeμ΄λΌλ©΄, μ’μ μ±μ§λ€μ΄ λ±μ₯ν¨!!
$\mathbb{Z}_n$ is a commutative ring!
Example. Direct product of rings
$R_1$, $R_2$, $\cdots$, $R_n$ are rings
- κ°μμ $+$μ λν΄μ abelian
- κ°μμ $\;\cdot\;$μ λν΄μ assotiative
Theorem.
$R$ is a ring, THEN
- $0 \cdot a = a \cdot 0 = 0$
- $a(-b)=(-a)b=-(ab)$
- $(-a)(-b) = ab$
proof.
1. First we will show $0\cdot a = 0$.
\[\begin{aligned} 0 \cdot a &= (0+0)a = 0\cdot a + 0\cdot a \\ 0 \cdot a &= 0 \cdot a + 0 \cdot a \\ 0 \cdot a - (0 \cdot a) &= 0 \cdot a + 0 \cdot a - (0 \cdot a) \\ 0 &= 0 \cdot a \end{aligned}\]λ°λΌμ $0\cdot a=0$μ΄λ€.
$a\cdot 0 = 0$μ λν΄μλ λμΌν λ°©λ²μΌλ‘ μ§ννλ©΄ λλ€.
2. We will show $a(-b)=-(ab)$.
Check
\[\begin{aligned} a(-b) + ab &= a(-b + b) \\ &= a \cdot 0 \\ &= 0 \end{aligned}\]λ°λΌμ $a(-b) + ab = 0$μ΄κ³ , μ΄μ λ°λΌ $a(-b) = -(ab)$.
3.
μμ μ¦λͺ ν 2λ² μ±μ§μ μν΄ $(-a)(-b) = -(a(-b))$μ΄λ€.
2λ² μ±μ§μ νλ² λ μ μ©νλ©΄, $-(a(-b)) = -(-(ab))$μ΄λ€.
λ°λΌμ $(-a)(-b) = -(-(ab))$μ΄ λλ€.
μ΄λ, μμμ μμμ μκΈ°μμ μ΄ λλ―λ‘, $-(-(ab)) = ab$μ΄λ€.
λ°λΌμ $(-a)(-b) = ab$.
Ring Homomorphism
Definition. Ring homomorphism
A map $\phi: R \rightarrow R$ is a ring homomorphism, IF
(1) $\phi(a+b) = \phi(a) + \phi(b)$, $\forall \; a, b \in R$; (abelian) group homomorphism
(2) $\phi(ab) = \phi(a)\phi(b)$, $\forall \; a, b \in R$; semi-group homomorphism
Note. 1-1 Ring homomorphism
Example.
For fixed $a\in R$, define $\phi_a$ as
μ¦, ν¨μ $\phi_a$λ κ° $a$μ λν evaluation mappingμ.
THEN, $\phi_a$ is a homomorphism.
- $\phi_a(f+g) = (f+g)(a) = f(a) + g(a) = \phi_a(f) + \phi_a(g)$
- $\phi_a(fg) = (fg)(a) = f(a)g(a) = \phi_a(f)\phi_a(g)$
Ring Isomorphism
Definition. Ring Isomorphism
A function $\phi: R \longrightarrow Rβ$ is a ring isomorphism, IF
(1) $\phi$ is 1-1 & onto.
(2) $\phi$ is a ring homomorphism.
Note. inverse of Ring Isomorphism
IF $\phi$ is a ring isomorphism, THEN $\phi^{-1}$ is also a ring isomorphism.
μ°λ¦¬κ° μ±μ§ λ³λ‘ Groupμ λΆλ₯νλ―μ΄ Ringμ λ μμΈν λΆλ₯ν΄λ³΄μ.
Ring (part 2)μμλ Ringμ λ μμΈνκ² λΆλ₯νλ€!