Cayley Theorem
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
κ΅°μ λν μΌλ°μ μΈ μ±μ§μ κΈ°μ νκΈ°μ λͺ μ μ체λ λλμ§λ§, λ³ μΈλͺ¨λ μλ λͺ μ , βCayleyβs Theoremβμ΄λ€!
Theorem.
Every group is isomorphic to a subgroup of a suitable permutation group.
\[G \le S_G\]proof.
Let $G$ be a group, and $S_G$ be a set of permutations on $G$.
We will show that $G$ is isomorphic to some subgroup of $S_G$.
Chose one of $a \in G$, and consider a simple mapping $\lambda_a$ s.t.
\[\begin{aligned} \lambda_a: G & \longrightarrow G \\ g & \longmapsto ag \end{aligned}\]We claim that $\lambda_a$ is 1-1 & onto, i.e. $\lambda_a \in S_G$.
(1) $\lambda_a$: 1-1
Supp. $ag = agβ$, THEN
$\implies a^{-1}(ag) = a^{-1}(agβ) \implies g = gβ$
λ°λΌμ $\lambda_a$ is 1-1.
(2) $\lambda_a$: onto
For $gβ \in G$, find $g$ s.t. $gβ = ag$, THEN
$a^{-1}gβ = g \in G$ is that inverse image of $gβ$.
λ°λΌμ $\lambda_a$ is onto.
Let $Gβ := \{ \lambda_a \mid a \in G\} \subseteq S_G$.
We claim $Gβ$ is a subgroup of $S_G$; $Gβ \le S_G$
(1) $Gβ$ is closed under opr.
$\lambda_a \cdot \lambda_{aβ} = \lambda_{aaβ} \in Gβ$
(2) Identity
$\lambda_e: g \mapsto g = \textrm{id}_{Gβ}$
(3) Inverse
If $\lambda_a \in Gβ$. THEN there exist an inv. map.
$(\lambda_a)^{-1} = \lambda_{aβ} \in Gβ$
That inv. map $\lambda_{aβ}$ is about $aβ = a^{-1}$.
λ°λΌμ $Gβ \le S_G$μ΄λ€!
Finally, we will show $G \cong Gβ$.
Define a group iso- $\psi$ as
\[\begin{aligned} \psi: G & \longrightarrow G' \\ a & \longmapsto \lambda_a \end{aligned}\](1) $\psi$ is 1-1
Supp. $\lambda_a = \lambda_b$, THEN
$\lambda_a (e) = a = b = \lambda_b (e)$
(2) $\psi$ is onto
Clear! $\lambda_a$ has inv. image $a \in G$ under $\psi$.
(3) $\psi$ is homo-
\[\begin{aligned} \psi(ab) &= \lambda_{ab} \\ &= \lambda_a \cdot \lambda_b = \psi(a) \cdot \psi(b) \\ \end{aligned}\]λ°λΌμ $G \cong Gβ$μ΄κ³ , $Gβ \le S_G$μ΄λ―λ‘
\[G \cong G' \le S_G\]Every group is isomorphic to a subgroup of a suitable permutation group. $\blacksquare$