2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

6 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)


๊ตฐ๋ก ์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์ข…๋ฅ˜์˜ Factor Group์ด ์กด์žฌํ•œ๋‹ค.

  1. Factor Group from Normal Subgroup
  2. Factor Group from Homomorphism



Factor Group์„ ์ •์˜ํ•˜๋ ค๋ฉด, ๋จผ์ € Factor Group์—์„œ ์‚ฌ์šฉํ•  โ€œcoset ๊ฐ„์˜ ์—ฐ์‚ฐโ€œ์„ ์ •์˜ํ•ด์•ผ ํ•œ๋‹ค!

Theorem.

Let $H \le G$, THEN the left coset multiplication is well-defined by equation

\[\begin{equation} (aH)(bH) := abH \end{equation}\]

์ด๋•Œ, ์œ„์˜ ์‹ (1)์ด ์„ฑ๋ฆฝํ•˜์—ฌ ์—ฐ์‚ฐ์ด well-defined์ด ๋˜๊ธฐ ์œ„ํ•ด์„ 

โ€œThe left & right coset coincide, so that $aH = Ha \quad \forall a \in G$โ€

์กฐ๊ฑด์ด ๋งŒ์กฑ๋˜์–ด์•ผ ํ•œ๋‹ค!! ์ด ์กฐ๊ฑด์€ $H$๊ฐ€ $G$์˜ normal subgroup์ž„์„ ๋งํ•œ๋‹ค!!


proof.

($\implies$) Supp. that $(aH)(bH) = abH$ is well-defined.

To show $aH = Ha$,

\[\begin{aligned} (aH)(a^{-1}H) = aa^{-1}H = eH = H \\ \end{aligned}\]

์ด๋•Œ, $aHa^{-1} \cdot H = H$์—์„œ ์ขŒ๋ณ€์˜ ๊ฒฐ๊ณผ๊ฐ€ $H$์— ๋‹ค์‹œ ๋“ค์–ด๊ฐ€์•ผ ํ•˜๋ฏ€๋กœ $aha^{-1} \in H$์ผ ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ $aHa^{-1} \subseteq H$

๋ฐ˜๋Œ€๋กœ $a^{-1}Ha \cdot H = H$์— ๋Œ€ํ•ด์„œ๋Š” $a^{-1}Ha \subseteq H$์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป๋Š”๋‹ค.

๋‘ ์‚ฌ์‹ค์„ ์ž˜ ์กฐํ•ฉํ•˜๋ฉด,

\[\begin{aligned} aHa^{-1} \subseteq H & \implies aH \subseteq Ha \\ a^{-1}Ha \subseteq H & \implies Ha \subseteq aH \end{aligned}\]

๋”ฐ๋ผ์„œ $aH = Ha$์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป๋Š”๋‹ค. ์ฆ‰, left & right coset์ด ์ผ์น˜ํ•˜๋Š” normal subgroup $H$์ด๋‹ค!


๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ์— ๋Œ€ํ•ด์„œ๋„ ์ฆ๋ช…์„ ํ•ด๋ณด์ž!

($\impliedby$) Supp.that $aH = Ha \quad \forall a \in G$.

To show โ€œ$(xH)(yH) = xyH$ is well-definedโ€,

Let $xH = xโ€™H$, and $yH = yโ€™H$.

Then, we have to show $(xH)(yH) = (xโ€™H)(yโ€™H)$; i.e. $xyH = xโ€™yโ€™H$.


From $xH = xโ€™H$, $xe = xโ€™h_1$ for some $h_1 \in H$,
and from $yH = yโ€™H$, $ye = yโ€™h_2$ for some $h_2 \in H$.

Then, $xy = (xโ€™h_1)(yโ€™h_2)$์—์„œ $H$๊ฐ€ normal subgroup์ด๋ฏ€๋กœ $(xโ€™h_1)(yโ€™h_2) = xโ€™yโ€™h_1h_2$.

๋”ฐ๋ผ์„œ $xyH = xโ€™yโ€™h_1h_2H = xโ€™yโ€™H$.

๋”ฐ๋ผ์„œ $H$๊ฐ€ normal subgroup์ด๋ฉด, Factor Group operation์€ ์ž˜ ์ •์˜๋œ๋‹ค! $\blacksquare$



์ด์ œ ๋ณธ๊ฒฉ์ ์œผ๋กœ Factor Group์„ ๋งŒ๋“ค์–ด๋ณด์ž!!

Theorem.

Let $H \le G$ be a normal subgroup,

Then the set of cosets of $H$ forms a factor group $G/H$ ($G$ mod $H$) under the binary operation.

\[(aH)(bH) = abH\]


proof.

์‹ค์ œ๋กœ $G/H$๊ฐ€ Group์ธ์ง€ ํ™•์ธํ•˜๋ฉด ๋œ๋‹ค.

  1. Closed under opr; ๋‹น์—ฐ์“ฐ
  2. Associativity; ๋‹น์—ฐ์“ฐ
  3. Identity; $H$
  4. Inverse; $(aH)^{-1} = a^{-1}H$



Normal Subgroup

Normal Subgrop์€ $aH = Ha \quad (\forall a \in G)$๋กœ ์ •์˜๋˜์ง€๋งŒ, ์ด ์กฐ๊ฑด๊ณผ ๋™์น˜์ธ ์กฐ๊ฑด๋“ค์ด ๋ช‡๋ช‡ ์žˆ๋‹ค.

๋Œ€ํ‘œ์ ์œผ๋กœ

\[\begin{equation} aHa^{-1} \subseteq H \quad (\forall a \in G) \end{equation}\]

์ด๋‹ค.

๋ถ€๋“ฑํ˜ธ ๋ฐฉํ–ฅ์ด ํ•œ ๋ฐฉํ–ฅ์ด๋ผ $aHa^{-1} = H$ ์กฐ๊ฑด์„ ์ด๋Œ์–ด ๋‚ด๊ธฐ์—๋Š” ๋ถ€์กฑํ•ด๋ณด์ผ์ง€๋„ ๋ชจ๋ฅธ๋‹ค. ํ•˜์ง€๋งŒ,

$\forall a\in G$์ด๋ฏ€๋กœ Eq.(2)์— $a$ ๋Œ€์‹  $a^{-1}$์„ ๋„ฃ์–ด๋„ ์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค. ๋”ฐ๋ผ์„œ

\[\begin{aligned} aHa^{-1} \subseteq H &\quad (\forall a \in G) \\ a^{-1}Ha \subseteq H &\quad (\forall a \in G) \\ \end{aligned}\]

๊ทธ๋ฆฌ๊ณ  ๊ธฐ์กด์˜ Eq.(2)์—์„œ ์–‘๋ณ€์— $a^{-1}$, $a$๋ฅผ ์ทจํ•˜๋ฉด, ์•„๋ž˜์˜ ๋ถ€๋“ฑ์‹์„ ์–ป๋Š”๋‹ค.

\[\begin{aligned} aHa^{-1} \subseteq H &\implies a^{-1}(aHa^{-1})a \subseteq a^{-1}(H)a \\ &\implies H \subseteq a^{-1}Ha \end{aligned}\]

$a^{-1}Ha \subseteq H$, $H \subseteq a^{-1}Ha$์ด๋ฏ€๋กœ $a^{-1}Ha = H$์ด๋‹ค. ์ฆ‰, Normal Subgroup์ด๋‹ค! $\blacksquare$



Factor Group from Homomorphism

์ด๋ฒˆ์—” Homomorphism $\phi$๋ฅผ ํ†ตํ•ด Factor Group์„ ์ •์˜ํ•ด๋ณด์ž!

Theorem.

Let $\phi: G \longrightarrow Gโ€™$ be a group homormophism.

Then, $\ker \phi = \{ g \in G \mid \phi(G) = eโ€™\}$ is a normal subgroup.

proof.

We will show $g (\ker \phi) g^{-1} \subseteq \ker \phi \quad \forall g \in G$.

Letโ€™s do a conjugation on $x \in \ker \phi$, $gxg^{-1}$

Then,

\[\begin{aligned} \phi(gxg^{-1}) = \phi(g) e' \phi(g^{-1}) = \phi(g) \phi(g^{-1}) = e' \end{aligned}\]

๋”ฐ๋ผ์„œ $gxg^{-1} \in \ker \phi$์ด๋‹ค!

๋”ฐ๋ผ์„œ $g(\ker \phi)g^{-1} \subseteq \ker \phi \quad \forall g \in G$. $\blacksquare$


Property.

Every subgroup of abelian is normal.



Mappings in Group Theory

  1. Homo-morphism
  2. Iso-morphism
  3. Auto-morphism
  4. Endo-morsphim


Homo-morphism.

pass

Iso-morphism.

Homo-morphism + (1-1 & onto)

Auto-morphism.

Iso-morphism + (self mapping; $\phi: G \longrightarrow G$)

Endo-morphism.

Homo-morphism + (self mapping)


Inner Automorphism

Let $G$ be a group, and $g \in G$.

Define $\sigma_g$ as

\[\begin{aligned} \sigma_g: G &\longrightarrow G \\ x & \longmapsto gxg^{-1} \end{aligned}\]

Then, $\sigma_g$ is a auto-morphism.

์‹ค์ œ๋กœ $\sigma_g$๊ฐ€ Auto-morphism์ธ์ง€์— ๋Œ€ํ•œ ๋ถ€๋ถ„์„ ๋„ˆ๋ฌด ์‰ฌ์›Œ์„œ ์ƒ-๋žต ํ•˜๊ฒ ๋‹ค.

์ด๋•Œ, $\sigma_g$๋Š” $g \in G$๊ฐ€ ํ•˜๋‚˜ ์ฃผ์–ด์งˆ ๋•Œ๋งˆ๋‹ค $\sigma_g$๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ โ€œInner Auto-morphismโ€œ์ด๋ผ๊ณ  ํ•œ๋‹ค!