2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

5 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


μ „λΆ€ λ‹€ μ •λ¦¬ν•˜μ§€λŠ” μ•Šκ³ , ν₯미둜운 일뢀 예제만 정리해둔닀.


Example.

Show $(\mathbb{R}^{*}, \cdot) \not\cong (\mathbb{C}^{*}, \cdot)$.


Sol. 1

Supp. $\exists$ an iso- $\phi: \mathbb{C}^{*} \longrightarrow \mathbb{R}^{*}$.

THEN, there exist an elt $x \in \mathbb{C}^{*}$ s.t. $\phi(x) = -1$.

Because $x$ is complex number, there exist a complex root of $x$, $\sqrt{x} \in \mathbb{C}^{*}$.

THEN,

\[\begin{aligned} \phi \left( \left( \sqrt{x} \right)^2 \right) &= \phi(x) = -1 \\ &= \left( \phi(\sqrt{x}) \right)^2 = -1 \end{aligned}\]

μ΄λ•Œ, $\phi(\sqrt{x}) \in \mathbb{R}^{*}$μ΄λ―€λ‘œ $\left( \phi(\sqrt{x}) \right)^2 > 0$이닀. ν•˜μ§€λ§Œ μš°λ³€μ΄ μŒμˆ˜μ΄λ―€λ‘œ λͺ¨μˆœμ΄λ‹€!

λ”°λΌμ„œ μ²˜μŒμ— κ°€μ •ν•œ iso- $\phi: \mathbb{C}^{*} \longrightarrow \mathbb{R}^{*}$λŠ” μ‘΄μž¬ν•˜μ§€ μ•ŠλŠ”λ‹€. $\blacksquare$


$\phi$λ₯Ό λ°˜λŒ€ λ°©ν–₯으둜 μž‘μ•„μ„œ 증λͺ…을 ν•  μˆ˜λ„ μžˆλ‹€. κ·ΈλŸ¬λ‚˜ 이 κ²½μš°λŠ” 쒀더 ν…Œν¬λ‹ˆμ»¬ ν•˜λ‹€.

Sol. 2

Supp. $\exists$ an iso- $\phi: \mathbb{R}^{*} \longrightarrow \mathbb{C}^{*}$.

THEN, it is true that $\phi(1) = 1$; identity maps to identity

THEN,

\[\begin{aligned} \phi(1) &= \phi(-1 \cdot -1) \\ &= \phi(-1) \phi(-1) = 1 \end{aligned}\]

λ”°λΌμ„œ $\phi(-1) = -1$이닀.

λ§Œμ•½ $\phi$κ°€ iso- 라면 $\sqrt{-1} = i \in \mathbb{C}^{*}$에 λŒ€ν•΄μ„œλ„ λŒ€μ‘ν•˜λŠ” μ›μ†Œ $x$κ°€ $\mathbb{R}^{*}$에 μ‘΄μž¬ν•  것이닀.

κ·Έλ ‡λ‹€λ©΄,

\[\begin{aligned} -1 = \sqrt{-1} \sqrt{-1} = \phi(x) \phi(x) = \phi(-1) \end{aligned}\]

μ΄λ―€λ‘œ $\mathbb{R}^{*}$ μ•„λž˜μ—μ„œ $x^2 = -1$ 식이 μ„±λ¦½ν•œλ‹€.

ν•˜μ§€λ§Œ, $x \in \mathbb{R}^{*}$에 λŒ€ν•΄ $x^2 > 0$μ΄λ―€λ‘œ $x^2 = -1$λŠ” λͺ¨μˆœμ΄λ‹€!

λ”°λΌμ„œ μ²˜μŒμ— κ°€μ •ν•œ iso- $\phi: \mathbb{R}^{*} \longrightarrow \mathbb{C}^{*}$λŠ” μ‘΄μž¬ν•˜μ§€ μ•ŠλŠ”λ‹€. $\blacksquare$



κ°€λ²Όμš΄ λ¬Έν’€ λ¬Έμ œλ“€μ„ ν’€μ–΄λ³΄μž.


Problem. 1

Q. λ¬΄ν•œκ΅°μ—μ„œ μœ ν•œκ΅°μœΌλ‘œ λŒ€μ‘ν•˜λŠ” non-trivial homo-λŠ” λΆˆκ°€λŠ₯ν•˜λ‹€. (T/F)

A. False; κ°€μ§ˆ 수 μžˆλ‹€.

\[\begin{aligned} \phi: \mathbb{Z} &\longrightarrow \mathbb{Z}_2 \\ n & \longmapsto n \quad (\textrm{mod}\; 2) \end{aligned}\]


Problem. 2

non-trivial homo- $\phi$κ°€ μ‘΄μž¬ν•˜λŠ”μ§€ μ—¬λΆ€λ₯Ό λ°ν˜€λΌ.

\[\phi: S_4 \longrightarrow S_3\]

A. Define $\phi$ as

\[\begin{aligned} \phi: S_4 & \longrightarrow S_3 \\ \textrm{even} & \longmapsto (1) \\ \textrm{odd} & \longmapsto (1 \; 2) \end{aligned}\]



Homo- κ°€ μ‘΄μž¬ν•¨μ„ λ³΄μ΄λŠ” 건 머리λ₯Ό 잘 κ΅΄λ €μ„œ 생각해내면 λ˜λŠ”λ°, Homo- κ°€ μ‘΄μž¬ν•˜μ§€ μ•ŠμŒμ„ λ³΄μ΄λŠ” 건 μ–΄λ–€ 정리λ₯Ό μ΄μš©ν•΄μ•Όλ§Œ ν•œλ‹€.

μ•„λž˜μ˜ 정리λ₯Ό 증λͺ…ν•΄λ³΄μž.


Theorem.

Let $\phi$ be a group homo-, Show that

If $\lvert G \rvert < \infty$, then

  1. $\lvert \phi[G] \rvert < \infty$
  2. $\lvert \phi[G] \rvert$ divides $\lvert G \rvert$


proof.

1λ²ˆμ€ $\phi$κ°€ well-defined ν•¨μˆ˜λΌλ©΄,
$G$의 μ›μ†Œ ν•˜λ‚˜λ₯Ό $G’$의 μ›μ†Œ ν•˜λ‚˜λ‘œ λŒ€μ‘μ‹œν‚¬ 것이기 λ•Œλ¬Έμ— λ‹Ήμ—°νžˆ $\lvert \phi[G] \rvert < \infty$κ°€ λœλ‹€.

2번 λͺ…μ œμ— λŒ€ν•œ 증λͺ…

2λ²ˆμ€ $\lvert \phi[G] \rvert$κ°€ $\lvert G \rvert$의 μ•½μˆ˜λΌλŠ” μ μ—μ„œ 힌트λ₯Ό μ–»μ–΄ Lagrange Thm을 생각해내고, β€œκ·ΈλŸΌ $\lvert \phi[G] \rvert$와 λ™ν˜•μΌ subgroup $H$κ°€ μ‘΄μž¬ν•˜μ§€ μ•Šμ„κΉŒβ€λΌκ³  μƒκ°ν•΄μ„œ ν•΄κ²°ν•˜μ˜€λ‹€.

κ·Έλž˜μ„œ 우리의 λͺ©ν‘œλŠ” $\phi[G] \cong H$ for some $H \le G$λ₯Ό λ§Œμ‘±ν•˜κ²Œ ν•˜λŠ” iso-인 $\psi$λ₯Ό μ°ΎλŠ” 것이 λœλ‹€.

$\psi$λ₯Ό μ•„λž˜μ™€ 같이 μ •μ˜ν•΄λ³΄μž.

\[\begin{aligned} \psi: \phi[G] &\longrightarrow H \subseteq G\\ g' &\longmapsto \textrm{inv. of} \; g' \end{aligned}\]

즉, $\psi$λ₯Ό $\phi^{-1}$둜 μ„€μ •ν•œ 것이닀!

사싀 homo- $\phi$에 λŒ€ν•΄μ„œλŠ” μ•„λž˜μ˜ 두 λͺ…μ œκ°€ μ„±λ¦½ν•œλ‹€.

  1. $H \le G \implies \phi[H] \le G’$
  2. $H’ \le G’\implies \phi^{-1}[H’] \le G$

이 λͺ…μ œλ₯Ό 잘 쑰합해보면 λ˜λŠ”λ°,

$G \le G$μ΄λ―€λ‘œ $\phi[G] \le G’$이닀.

μ—¬κΈ°μ„œ $\phi^{-1}$λ₯Ό μ·¨ν•˜λ©΄, $\phi^{-1} \left[ \phi [G] \right] \le G$κ°€ λœλ‹€.

즉, μš°λ¦¬κ°€ μ°ΎμœΌλ €λŠ” $H$λŠ” 사싀 $\phi^{-1} \left[ \phi [G] \right] = \psi \left[ \phi [G] \right]$인 것이닀.


κ·Έλ ‡λ‹΄ μš°λ¦¬λŠ” $\lvert \phi[G] \rvert = \lvert \phi^{-1} \left[ \phi [G] \right] \rvert$만 보이면 μΆ©λΆ„ν•˜λ‹€.

λ§Œμ•½ μ„œλ‘œ λ‹€λ₯Έ $g’_1, g’_2 \in \phi[G]$λ₯Ό λ‹€μ‹œ $G$둜 보낼 λ•Œ, $\phi^{-1}(g’_1) = \phi^{-1}(g’_2) = g \in G$라고 κ°€μ •ν•˜μž. 이것은 $g \in G$κ°€ $\phi$에 μ˜ν•΄ 두 가지 μ›μ†Œλ‘œ λ§€ν•‘λœλ‹€λŠ” κ²ƒμ΄λ―€λ‘œ $\phi$의 well-defined에 λͺ¨μˆœμ΄λ‹€.

λ”°λΌμ„œ $\phi^{-1}$λŠ” 1-1이닀. 이것은 곧 $\lvert \phi[G] \rvert = \lvert \phi^{-1} \left[ \phi [G] \right] \rvert$λ₯Ό μ˜λ―Έν•œλ‹€.


$\phi^{-1} \left[ \phi [G] \right] \le G$μ΄λ―€λ‘œ Lagrange Thm에 μ˜ν•΄ $\lvert \phi^{-1} \left[ \phi [G] \right] \rvert \mid \lvert G \rvert$이닀.

μ΄λ•Œ, $\lvert \phi[G] \rvert = \lvert \phi^{-1} \left[ \phi [G] \right] \rvert$μ΄λ―€λ‘œ $\lvert \phi[G] \rvert \mid \lvert G \rvert$이닀. $\blacksquare$