Three Isomorphism Theorems
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
μ§κΈ λ€λ£¨λ Isomorphism Theoremμ μμ ν μ΄ν΄νκ³ μ²΄λνλ€λ©΄, κ΅°λ‘ μ체λ₯Ό μμ£Ό κΉκ² μ΄ν΄ν μ μλ€ γ γ
1st Isomorphism Theorem; FHT
첫λ²μ¬ Isomorphism Theoremμ μ΄μ μ ν¬μ€νΈμμ μ΄λ―Έ λ€λ£¨μλ€. FHTκ° κ³§ 1st Isomorphism Theoremμ΄λ€!
Theorem. Fundamental Homormophism Theorem (FHT)
Let $\phi: G \longrightarrow Gβ$ be a group homo-.
Then,
- $\phi[G]$ is a group.
- $G / {\ker \phi} \cong \phi[G]$
Lemma 34.4
Lemma.
Let $N \trianglelefteq G$, $H \le G$.
Then,
- $HN = NH$
- $HN \le G$
λ§μ½ $H$ μμ normal subgroupμ΄λΌλ©΄, $HN \trianglelefteq G$κ° λλ€!
μ¦λͺ μ΄ μκ°λ³΄λ€ μ½λ€!
proof.
1. $HN = NH$
Let $h \in H$, $n \in N$.
Then,
\[\begin{aligned} &hnh^{-1} \in N \\ &\implies hn \in Nh \\ &\implies hn = n'h \quad \textrm{for some} \; n' \in N \\ &\implies \therefore HN \subseteq NH \end{aligned}\]λ°λλ‘ $h^{-1}nh^ \in N$λ‘ μ‘λλ€λ©΄, $NH \subseteq HN$μ κ²°κ³Όλ₯Ό μ»λλ€.
λμ μ’ ν©νλ©΄,
\[HN \subseteq NH \; \land \; NH \subseteq HN \implies HN = NH\]$\blacksquare$
2. $HN \le G$
Normal subgpκ³Ό μΌλ° subgpλ§ μλ€λ©΄, $G$μ μνλ μλ‘μ΄ subgpμ μ λν μ μλ€λ λͺ μ λ€.
κ°λ¨ν $HN$μ΄ subgpμΈμ§ νμΈνλ©΄ λλ€.
(1) closed under opr
$(HN)(HN) = H(NH)N = H(HN)N = HN$
(2) identity
$e \in H \; \land \; e \in N \implies e \cdot e = e \in HN$
(3) inverse
$(hn)^{-1} = n^{-1} h^{-1} \in NH = HN$
$\blacksquare$
Definition. Subgp generated by set $S$
$< S >$: the subgroup of $G$ generated by $S$
\[< S > \; = \; \underset{S \subseteq H \le G}{\bigcap} H\]μ΄λ, intersection of subgpsλ μ¬μ ν subgpμ΄λΌλ κ²μ΄ μλ €μ Έ μλ€.
μ¦, set $S$λ₯Ό ν¬ν¨νλ subgroup μ€ κ°μ₯ μμ subgroupμ΄ $< S >$μ΄λ€.
$H$ join $K$
Definition. $H$ join $K$
$H$ join $K$λ subgroup $H$μ $K$λ₯Ό ν¬ν¨νλ κ°μ₯ μμ subgroupμ΄λ€.
β» μ΄λ! λ§μ½ $H \trianglelefteq G$λΌλ©΄, $H \lor K = HK$κ° λλ€!
βλ§μ½ $H \trianglelefteq G$λΌλ©΄, $H \lor K = HK$κ° λλ€!βλΌλ λͺ μ μ λν΄ λ³΄μΆ©ν΄λ³΄κ³ μ νλ€.
$H \cup K$λ₯Ό ν¬ν¨νλ subgroupμλ λΉμ°ν $H$λ ν¬ν¨νκ³ , $K$λ ν¬ν¨νκ³ , $HK$μ $KH$ ν¬ν¨νκ³ μμ κ²μ΄λ€.
μ΄λ, μ΄μ΄ μ’μ $HK$μ $KH$ μ°μ°μΌλ‘ μ΄λ―Έ Groupμ μ΄λ£¬λ€λ©΄, λ $HK = KH$λΌλ©΄, Lucky! μ°λ¦¬λ $<H \cup K> = HK$λ‘ μ°Ύμλλ€!!
νμ§λ§, μμ½κ²λ $HK$κ° κΌ Groupμ μ΄λ£¬λ€λ 보μ₯μ μλ€ γ γ $hk \notin H, K$μΌ μλ μκΈ° λλ¬Έμ΄λ€.
μ°λ¦¬κ° μμμ μ΄ν΄λ³Έ Lemmaλ $HK$κ° Groupμ΄ λλ 쑰건μ μ μνλ€.
\[H \trianglelefteq G \; \land \; K \le G \implies HK \le G\]λ°λΌμ $H$κ° Normal subgpμ΄λΌλ©΄, $H$ join $K$λ $HK$κ° λλ€!!
2nd Isomorphism Theorem
Theorem. 2nd Isomorphism Theorem
Let $H \le G$, $N \trianglelefteq G$.
Then,
\[HN / N \; \cong \; N / {(H \cap N)}\]μ 리 μ체λ μ λ§ κ°κ²°νλ€β¦ νμ§λ§, λ΄μ©μ ν λ¬Έμ₯μΌλ‘ μμΆν΄ λμ κ²μ΄λΌ μ 리λ₯Ό μ λνλ λ°κΉμ§ νμν λ·λ°°κ²½μ΄ λ§μ νΈμ΄λ€ γ γ
proof.
λ¨Όμ κ°μ μΈ $H \le G$, $N \trianglelefteq G$λ‘λΆν° λͺ μ μ μ¬λ£κ° λλ factor group $HN/N$μ μ λνμ. μ΄ κ³Όμ μμ μλΆλΆμ λμλ Lemmaλ₯Ό μ¬μ©νλ€.
$H \le G$, $N \trianglelefteq G$μ΄λ―λ‘ Lemmaμ μν΄ $HN \le G$μ΄λ€.
Normal subgpμ λν΄μ μλμ λͺ μ κ° μ±λ¦½νλ€.
\[\begin{aligned} &\textrm{For} \quad N \le K \le G, \\ &N \trianglelefteq G \implies N \trianglelefteq K \end{aligned}\]λͺ μ μ μ¦λͺ μ κ°λ¨νλ μ¬κΈ°μμλ μ-λ΅ νλ€.
μ΄λ, $N \le HN \le G$μ΄κ³ , $N \trianglelefteq G$μ΄λ―λ‘ $N \trianglelefteq HN$μ΄ λλ€.
$N$μ΄ $HN$μ normal subgroupμ΄λ―λ‘
$N$μ λν $HN$μ Factor Group $HN/N$μ μ μν μ μλ€!
μ΄λ²μλ λνμμ μ°λ³μΈ $H / (H \cap N)$μ μ λν΄λ³΄μ.
λ§μ½ $N \trianglelefteq G$λΌλ©΄, $H \cap N \trianglelefteq H$κ° μ±λ¦½νλ€.
λ°λΌμ $(H \cap N)$μ λν $H$μ Factor Group $H / (H \cap N)$μ μ μν μ μλ€!
λλμ΄ μ¦λͺ μ λ³Έκ²μμ΄λ€!
μλμ κ°μ homomorphism $\phi$λ₯Ό λμμΈ νλ€.
\[\begin{aligned} \phi: H &\longrightarrow HN \longrightarrow HN / N \\ h &\longmapsto \; h \quad \longmapsto hN \end{aligned}\]μ΄λ, $\phi$λ homo-μ homo-μ ν©μ± μ΄λ―λ‘ μμ homo-μ΄λ€.
λν, $\phi(h) = hN$μ΄κΈ° λλ¬Έμ $\phi$λ ontoμ΄λ€.
μ΄μ μ΄ homo- $\phi$μ kernelμ μκ°ν΄λ³΄μ.
μ°λ¦¬λ $\ker \phi = H \cap N$μ΄ λ¨μ λ³΄μΌ κ²μ΄λ€.
λ°λΌμ $h \in N$μ΄κ³ , $\ker \phi \subseteq H \cap N$μ΄λ€.
λ°λλ‘,
\[x \in H \cap N \implies \phi(x) = xN = N\]λ°λΌμ $x \in \ker \phi$μ΄κ³ , $\ker \phi \subseteq H \cap N$μ΄λ€.
λ°λΌμ $\ker \phi = H \cap N$μ΄λ€.
FHTμ μν΄ $H / {\ker \phi} \cong \phi(H)$μ΄λ€. μ΄λ, $\phi$κ° onto μμΌλ―λ‘ $\phi(H) = HN / N$μ΄λ€.
λ°λΌμ
\[H / (H \cap N) \cong HN / N\]3rd Isomorphism Theorem
Theorem. 3rd Isomorphism Theorem
Let $H, K \trianglelefteq G$, $K \le H$
Then,
\[G / H \; \cong \; (G/K) / (H/K)\]$\blacksquare$
μ λ κ³Όμ μ체λ 2nd iso- theoremμ λΉν΄μ μ λ§ μ¬μ΄ νΈμ΄λ€ γ γ
proof.
Define a homomoprhism $\phi$ as
\[\begin{aligned} \phi: G / K &\longrightarrow G / H \\ gK &\longmapsto gH \end{aligned}\]Then, check properties of $\phi$.
(1) well-defined
Supp. $gK = gβK$, then
\[\begin{aligned} &gK = g'K \\ &\implies g(g')^{-1}K = K \\ &\implies g(g')^{-1} \in K \\ &\implies g(g')^{-1} \in H \quad (\because K \le H) \\ &\implies g(g')^{-1} H = H \\ &\implies gH = g'H \end{aligned}\](2) $\phi$ is onto
clear
(3) $\phi$ is a homo-.
$\phi(g_1 K)\phi(g_2 K) = \phi(g_1 g_2 K)$ (by factor representative opr)
λ°λΌμ $\phi$λ homomorphismμ΄λ€.
FHTμ μν΄
\[(G/K) / \ker \phi \; \cong \; \phi(G/K)\]μ΄λ, $\ker \phi$λ μλμ κ°μ΄ μ λν μ μλ€.
\[gK \in \ker \phi \implies \phi(gK) = gH = H \implies g \in H\]λ°λΌμ $gK = hK \in H/K$μ΄κ³ , $\ker \phi \subseteq H/K$κ° λλ€.
λ°λλ‘
\[hK \in H/K \implies \phi(hK) = hH = H\]λ°λΌμ $hK \in \ker \phi$μ΄κ³ , $H/K \subseteq \ker \phi$μ΄λ€.
λ°λΌμ $\ker \phi = H/K$μ΄λ€.
λ€μ FHTμ μν΄ $(G/K) / \ker \phi \; \cong \; \phi(G/K)$μ΄λ―λ‘
\[(G/K) / (H/K) \; \cong \; G/H\]$\blacksquare$
λλμ΄ Isomorphism Thm κΉμ§ λλ¬νλ€!!
μμΌλ‘λ κ΅°λ‘ μ λ€μν μ 리λ€κ³Ό μ¬λ‘λ€μ΄ κΈ°λ€λ¦¬κ³ μμΌλ! κΈ°λνμλΌ!!!
