2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

9 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)



μ§€κΈˆ λ‹€λ£¨λŠ” Isomorphism Theorem을 μ™„μ „νžˆ μ΄ν•΄ν•˜κ³  μ²΄λ“ν•œλ‹€λ©΄, κ΅°λ‘  자체λ₯Ό μ•„μ£Ό 깊게 이해할 수 μžˆλ‹€ γ…Žγ…Ž



1st Isomorphism Theorem; FHT

첫번재 Isomorphism Theorem은 μ΄μ „μ˜ ν¬μŠ€νŠΈμ—μ„œ 이미 λ‹€λ£¨μ—ˆλ‹€. FHTκ°€ κ³§ 1st Isomorphism Theorem이닀!

Theorem. Fundamental Homormophism Theorem (FHT)

Let $\phi: G \longrightarrow G’$ be a group homo-.

Then,

  1. $\phi[G]$ is a group.
  2. $G / {\ker \phi} \cong \phi[G]$

Image from here



Lemma 34.4

Lemma.

Let $N \trianglelefteq G$, $H \le G$.

Then,

  1. $HN = NH$
  2. $HN \le G$

λ§Œμ•½ $H$ μ—­μ‹œ normal subgroup이라면, $HN \trianglelefteq G$κ°€ λœλ‹€!


증λͺ…이 생각보닀 쉽닀!

proof.

1. $HN = NH$

Let $h \in H$, $n \in N$.

Then,

\[\begin{aligned} &hnh^{-1} \in N \\ &\implies hn \in Nh \\ &\implies hn = n'h \quad \textrm{for some} \; n' \in N \\ &\implies \therefore HN \subseteq NH \end{aligned}\]

λ°˜λŒ€λ‘œ $h^{-1}nh^ \in N$둜 μž‘λŠ”λ‹€λ©΄, $NH \subseteq HN$의 κ²°κ³Όλ₯Ό μ–»λŠ”λ‹€.

λ‘˜μ„ μ’…ν•©ν•˜λ©΄,

\[HN \subseteq NH \; \land \; NH \subseteq HN \implies HN = NH\]

$\blacksquare$

2. $HN \le G$

Normal subgpκ³Ό 일반 subgp만 μžˆλ‹€λ©΄, $G$에 μ†ν•˜λŠ” μƒˆλ‘œμš΄ subgp을 μœ λ„ν•  수 μžˆλ‹€λŠ” λͺ…μ œλ‹€.


κ°„λ‹¨νžˆ $HN$이 subgp인지 ν™•μΈν•˜λ©΄ λœλ‹€.

(1) closed under opr

$(HN)(HN) = H(NH)N = H(HN)N = HN$

(2) identity

$e \in H \; \land \; e \in N \implies e \cdot e = e \in HN$

(3) inverse

$(hn)^{-1} = n^{-1} h^{-1} \in NH = HN$

$\blacksquare$



Definition. Subgp generated by set $S$

$< S >$: the subgroup of $G$ generated by $S$

\[< S > \; = \; \underset{S \subseteq H \le G}{\bigcap} H\]

μ΄λ•Œ, intersection of subgpsλŠ” μ—¬μ „νžˆ subgpμ΄λΌλŠ” 것이 μ•Œλ €μ Έ μžˆλ‹€.

즉, set $S$λ₯Ό ν¬ν•¨ν•˜λŠ” subgroup 쀑 κ°€μž₯ μž‘μ€ subgroup이 $< S >$이닀.


$H$ join $K$

Definition. $H$ join $K$

\[H \lor K \; := \; < H \cup K >\]

$H$ join $K$λŠ” subgroup $H$와 $K$λ₯Ό ν¬ν•¨ν•˜λŠ” κ°€μž₯ μž‘μ€ subgroup이닀.

β€» μ΄λ•Œ! λ§Œμ•½ $H \trianglelefteq G$라면, $H \lor K = HK$κ°€ λœλ‹€!

β€œλ§Œμ•½ $H \trianglelefteq G$라면, $H \lor K = HK$κ°€ λœλ‹€!β€λΌλŠ” λͺ…μ œμ— λŒ€ν•΄ λ³΄μΆ©ν•΄λ³΄κ³ μž ν•œλ‹€.

$H \cup K$λ₯Ό ν¬ν•¨ν•˜λŠ” subgroupμ—λŠ” λ‹Ήμ—°νžˆ $H$도 ν¬ν•¨ν•˜κ³ , $K$도 ν¬ν•¨ν•˜κ³ , $HK$와 $KH$ ν¬ν•¨ν•˜κ³  μžˆμ„ 것이닀.


μ΄λ•Œ, 운이 μ’‹μ•„ $HK$와 $KH$ μ—°μ‚°μœΌλ‘œ 이미 Group을 이룬닀면, 또 $HK = KH$라면, Lucky! μš°λ¦¬λŠ” $<H \cup K> = HK$둜 μ°Ύμ•„λƒˆλ‹€!!

ν•˜μ§€λ§Œ, μ•„μ‰½κ²Œλ„ $HK$κ°€ κΌ­ Group을 μ΄λ£¬λ‹€λŠ” 보μž₯은 μ—†λ‹€ γ… γ…  $hk \notin H, K$일 μˆ˜λ„ 있기 λ•Œλ¬Έμ΄λ‹€.


μš°λ¦¬κ°€ μ•žμ—μ„œ μ‚΄νŽ΄λ³Έ LemmaλŠ” $HK$κ°€ Group이 λ˜λŠ” 쑰건을 μ œμ‹œν•œλ‹€.

\[H \trianglelefteq G \; \land \; K \le G \implies HK \le G\]

λ”°λΌμ„œ $H$κ°€ Normal subgp이라면, $H$ join $K$λŠ” $HK$κ°€ λœλ‹€!!



2nd Isomorphism Theorem

Theorem. 2nd Isomorphism Theorem

Let $H \le G$, $N \trianglelefteq G$.

Then,

\[HN / N \; \cong \; N / {(H \cap N)}\]

정리 μžμ²΄λŠ” 정말 κ°„κ²°ν•˜λ‹€β€¦ ν•˜μ§€λ§Œ, λ‚΄μš©μ„ ν•œ λ¬Έμž₯으둜 μ••μΆ•ν•΄ 놓은 것이라 정리λ₯Ό μœ λ„ν•˜λŠ” λ°κΉŒμ§€ ν•„μš”ν•œ 뒷배경이 λ§Žμ€ νŽΈμ΄λ‹€ γ… γ… 


proof.

λ¨Όμ € 가정인 $H \le G$, $N \trianglelefteq G$λ‘œλΆ€ν„° λͺ…μ œμ˜ μž¬λ£Œκ°€ λ˜λŠ” factor group $HN/N$을 μœ λ„ν•˜μž. 이 κ³Όμ •μ—μ„œ μ•žλΆ€λΆ„μ— λ‚˜μ™”λ˜ Lemmaλ₯Ό μ‚¬μš©ν•œλ‹€.

$H \le G$, $N \trianglelefteq G$μ΄λ―€λ‘œ Lemma에 μ˜ν•΄ $HN \le G$이닀.


Normal subgp에 λŒ€ν•΄μ„  μ•„λž˜μ˜ λͺ…μ œκ°€ μ„±λ¦½ν•œλ‹€.

\[\begin{aligned} &\textrm{For} \quad N \le K \le G, \\ &N \trianglelefteq G \implies N \trianglelefteq K \end{aligned}\]

λͺ…μ œμ˜ 증λͺ…은 κ°„λ‹¨ν•˜λ‹ˆ μ—¬κΈ°μ—μ„œλŠ” 생-랡 ν•œλ‹€.

μ΄λ•Œ, $N \le HN \le G$이고, $N \trianglelefteq G$μ΄λ―€λ‘œ $N \trianglelefteq HN$이 λœλ‹€.

$N$이 $HN$의 normal subgroupμ΄λ―€λ‘œ
$N$에 λŒ€ν•œ $HN$의 Factor Group $HN/N$을 μ •μ˜ν•  수 μžˆλ‹€!

μ΄λ²ˆμ—λŠ” λ™ν˜•μ‹μ˜ μš°λ³€μΈ $H / (H \cap N)$을 μœ λ„ν•΄λ³΄μž.

λ§Œμ•½ $N \trianglelefteq G$라면, $H \cap N \trianglelefteq H$κ°€ μ„±λ¦½ν•œλ‹€.

λ”°λΌμ„œ $(H \cap N)$에 λŒ€ν•œ $H$의 Factor Group $H / (H \cap N)$을 μ •μ˜ν•  수 μžˆλ‹€!

λ“œλ””μ–΄ 증λͺ…μ˜ λ³Έκ²Œμž„μ΄λ‹€!

μ•„λž˜μ™€ 같은 homomorphism $\phi$λ₯Ό λ””μžμΈ ν•œλ‹€.

\[\begin{aligned} \phi: H &\longrightarrow HN \longrightarrow HN / N \\ h &\longmapsto \; h \quad \longmapsto hN \end{aligned}\]

μ΄λ•Œ, $\phi$λŠ” homo-와 homo-의 ν•©μ„± μ΄λ―€λ‘œ μ—­μ‹œ homo-이닀.

λ˜ν•œ, $\phi(h) = hN$이기 λ•Œλ¬Έμ— $\phi$λŠ” onto이닀.

이제 이 homo- $\phi$의 kernel을 μƒκ°ν•΄λ³΄μž.
μš°λ¦¬λŠ” $\ker \phi = H \cap N$이 됨을 보일 것이닀.

\[h \in \ker \phi \implies \phi(h) = hN = N\]

λ”°λΌμ„œ $h \in N$이고, $\ker \phi \subseteq H \cap N$이닀.

λ°˜λŒ€λ‘œ,

\[x \in H \cap N \implies \phi(x) = xN = N\]

λ”°λΌμ„œ $x \in \ker \phi$이고, $\ker \phi \subseteq H \cap N$이닀.

λ”°λΌμ„œ $\ker \phi = H \cap N$이닀.


FHT에 μ˜ν•΄ $H / {\ker \phi} \cong \phi(H)$이닀. μ΄λ•Œ, $\phi$κ°€ onto μ˜€μœΌλ―€λ‘œ $\phi(H) = HN / N$이닀.

λ”°λΌμ„œ

\[H / (H \cap N) \cong HN / N\]

Image from here



3rd Isomorphism Theorem

Theorem. 3rd Isomorphism Theorem

Let $H, K \trianglelefteq G$, $K \le H$

Then,

\[G / H \; \cong \; (G/K) / (H/K)\]

$\blacksquare$

μœ λ„ κ³Όμ • μžμ²΄λŠ” 2nd iso- theorem에 λΉ„ν•΄μ„  정말 μ‰¬μš΄ νŽΈμ΄λ‹€ γ…Žγ…Ž


proof.

Define a homomoprhism $\phi$ as

\[\begin{aligned} \phi: G / K &\longrightarrow G / H \\ gK &\longmapsto gH \end{aligned}\]

Then, check properties of $\phi$.

(1) well-defined

Supp. $gK = g’K$, then

\[\begin{aligned} &gK = g'K \\ &\implies g(g')^{-1}K = K \\ &\implies g(g')^{-1} \in K \\ &\implies g(g')^{-1} \in H \quad (\because K \le H) \\ &\implies g(g')^{-1} H = H \\ &\implies gH = g'H \end{aligned}\]

(2) $\phi$ is onto

clear

(3) $\phi$ is a homo-.

$\phi(g_1 K)\phi(g_2 K) = \phi(g_1 g_2 K)$ (by factor representative opr)

λ”°λΌμ„œ $\phi$λŠ” homomorphism이닀.

FHT에 μ˜ν•΄

\[(G/K) / \ker \phi \; \cong \; \phi(G/K)\]

μ΄λ•Œ, $\ker \phi$λŠ” μ•„λž˜μ™€ 같이 μœ λ„ν•  수 μžˆλ‹€.

\[gK \in \ker \phi \implies \phi(gK) = gH = H \implies g \in H\]

λ”°λΌμ„œ $gK = hK \in H/K$이고, $\ker \phi \subseteq H/K$κ°€ λœλ‹€.

λ°˜λŒ€λ‘œ

\[hK \in H/K \implies \phi(hK) = hH = H\]

λ”°λΌμ„œ $hK \in \ker \phi$이고, $H/K \subseteq \ker \phi$이닀.

λ”°λΌμ„œ $\ker \phi = H/K$이닀.


λ‹€μ‹œ FHT에 μ˜ν•΄ $(G/K) / \ker \phi \; \cong \; \phi(G/K)$μ΄λ―€λ‘œ

\[(G/K) / (H/K) \; \cong \; G/H\]

$\blacksquare$



λ“œλ””μ–΄ Isomorphism Thm κΉŒμ§€ λ„λ‹¬ν–ˆλ‹€!!

μ•žμœΌλ‘œλ„ ꡰ둠의 λ‹€μ–‘ν•œ 정리듀과 사둀듀이 기닀리고 μžˆμœΌλ‹ˆ! κΈ°λŒ€ν•˜μ‹œλΌ!!!