2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

9 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)



์ง€๊ธˆ ๋‹ค๋ฃจ๋Š” Isomorphism Theorem์„ ์™„์ „ํžˆ ์ดํ•ดํ•˜๊ณ  ์ฒด๋“ํ•œ๋‹ค๋ฉด, ๊ตฐ๋ก  ์ž์ฒด๋ฅผ ์•„์ฃผ ๊นŠ๊ฒŒ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค ใ…Žใ…Ž



1st Isomorphism Theorem; FHT

์ฒซ๋ฒˆ์žฌ Isomorphism Theorem์€ ์ด์ „์˜ ํฌ์ŠคํŠธ์—์„œ ์ด๋ฏธ ๋‹ค๋ฃจ์—ˆ๋‹ค. FHT๊ฐ€ ๊ณง 1st Isomorphism Theorem์ด๋‹ค!

Theorem. Fundamental Homormophism Theorem (FHT)

Let $\phi: G \longrightarrow Gโ€™$ be a group homo-.

Then,

  1. $\phi[G]$ is a group.
  2. $G / {\ker \phi} \cong \phi[G]$

Image from here



Lemma 34.4

Lemma.

Let $N \trianglelefteq G$, $H \le G$.

Then,

  1. $HN = NH$
  2. $HN \le G$

๋งŒ์•ฝ $H$ ์—ญ์‹œ normal subgroup์ด๋ผ๋ฉด, $HN \trianglelefteq G$๊ฐ€ ๋œ๋‹ค!


์ฆ๋ช…์ด ์ƒ๊ฐ๋ณด๋‹ค ์‰ฝ๋‹ค!

proof.

1. $HN = NH$

Let $h \in H$, $n \in N$.

Then,

\[\begin{aligned} &hnh^{-1} \in N \\ &\implies hn \in Nh \\ &\implies hn = n'h \quad \textrm{for some} \; n' \in N \\ &\implies \therefore HN \subseteq NH \end{aligned}\]

๋ฐ˜๋Œ€๋กœ $h^{-1}nh^ \in N$๋กœ ์žก๋Š”๋‹ค๋ฉด, $NH \subseteq HN$์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป๋Š”๋‹ค.

๋‘˜์„ ์ข…ํ•ฉํ•˜๋ฉด,

\[HN \subseteq NH \; \land \; NH \subseteq HN \implies HN = NH\]

$\blacksquare$

2. $HN \le G$

Normal subgp๊ณผ ์ผ๋ฐ˜ subgp๋งŒ ์žˆ๋‹ค๋ฉด, $G$์— ์†ํ•˜๋Š” ์ƒˆ๋กœ์šด subgp์„ ์œ ๋„ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๋ช…์ œ๋‹ค.


๊ฐ„๋‹จํžˆ $HN$์ด subgp์ธ์ง€ ํ™•์ธํ•˜๋ฉด ๋œ๋‹ค.

(1) closed under opr

$(HN)(HN) = H(NH)N = H(HN)N = HN$

(2) identity

$e \in H \; \land \; e \in N \implies e \cdot e = e \in HN$

(3) inverse

$(hn)^{-1} = n^{-1} h^{-1} \in NH = HN$

$\blacksquare$



Definition. Subgp generated by set $S$

$< S >$: the subgroup of $G$ generated by $S$

\[< S > \; = \; \underset{S \subseteq H \le G}{\bigcap} H\]

์ด๋•Œ, intersection of subgps๋Š” ์—ฌ์ „ํžˆ subgp์ด๋ผ๋Š” ๊ฒƒ์ด ์•Œ๋ ค์ ธ ์žˆ๋‹ค.

์ฆ‰, set $S$๋ฅผ ํฌํ•จํ•˜๋Š” subgroup ์ค‘ ๊ฐ€์žฅ ์ž‘์€ subgroup์ด $< S >$์ด๋‹ค.


$H$ join $K$

Definition. $H$ join $K$

\[H \lor K \; := \; < H \cup K >\]

$H$ join $K$๋Š” subgroup $H$์™€ $K$๋ฅผ ํฌํ•จํ•˜๋Š” ๊ฐ€์žฅ ์ž‘์€ subgroup์ด๋‹ค.

โ€ป ์ด๋•Œ! ๋งŒ์•ฝ $H \trianglelefteq G$๋ผ๋ฉด, $H \lor K = HK$๊ฐ€ ๋œ๋‹ค!

โ€œ๋งŒ์•ฝ $H \trianglelefteq G$๋ผ๋ฉด, $H \lor K = HK$๊ฐ€ ๋œ๋‹ค!โ€๋ผ๋Š” ๋ช…์ œ์— ๋Œ€ํ•ด ๋ณด์ถฉํ•ด๋ณด๊ณ ์ž ํ•œ๋‹ค.

$H \cup K$๋ฅผ ํฌํ•จํ•˜๋Š” subgroup์—๋Š” ๋‹น์—ฐํžˆ $H$๋„ ํฌํ•จํ•˜๊ณ , $K$๋„ ํฌํ•จํ•˜๊ณ , $HK$์™€ $KH$ ํฌํ•จํ•˜๊ณ  ์žˆ์„ ๊ฒƒ์ด๋‹ค.


์ด๋•Œ, ์šด์ด ์ข‹์•„ $HK$์™€ $KH$ ์—ฐ์‚ฐ์œผ๋กœ ์ด๋ฏธ Group์„ ์ด๋ฃฌ๋‹ค๋ฉด, ๋˜ $HK = KH$๋ผ๋ฉด, Lucky! ์šฐ๋ฆฌ๋Š” $<H \cup K> = HK$๋กœ ์ฐพ์•„๋ƒˆ๋‹ค!!

ํ•˜์ง€๋งŒ, ์•„์‰ฝ๊ฒŒ๋„ $HK$๊ฐ€ ๊ผญ Group์„ ์ด๋ฃฌ๋‹ค๋Š” ๋ณด์žฅ์€ ์—†๋‹ค ใ… ใ…  $hk \notin H, K$์ผ ์ˆ˜๋„ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.


์šฐ๋ฆฌ๊ฐ€ ์•ž์—์„œ ์‚ดํŽด๋ณธ Lemma๋Š” $HK$๊ฐ€ Group์ด ๋˜๋Š” ์กฐ๊ฑด์„ ์ œ์‹œํ•œ๋‹ค.

\[H \trianglelefteq G \; \land \; K \le G \implies HK \le G\]

๋”ฐ๋ผ์„œ $H$๊ฐ€ Normal subgp์ด๋ผ๋ฉด, $H$ join $K$๋Š” $HK$๊ฐ€ ๋œ๋‹ค!!



2nd Isomorphism Theorem

Theorem. 2nd Isomorphism Theorem

Let $H \le G$, $N \trianglelefteq G$.

Then,

\[HN / N \; \cong \; N / {(H \cap N)}\]

์ •๋ฆฌ ์ž์ฒด๋Š” ์ •๋ง ๊ฐ„๊ฒฐํ•˜๋‹คโ€ฆ ํ•˜์ง€๋งŒ, ๋‚ด์šฉ์„ ํ•œ ๋ฌธ์žฅ์œผ๋กœ ์••์ถ•ํ•ด ๋†“์€ ๊ฒƒ์ด๋ผ ์ •๋ฆฌ๋ฅผ ์œ ๋„ํ•˜๋Š” ๋ฐ๊นŒ์ง€ ํ•„์š”ํ•œ ๋’ท๋ฐฐ๊ฒฝ์ด ๋งŽ์€ ํŽธ์ด๋‹ค ใ… ใ… 


proof.

๋จผ์ € ๊ฐ€์ •์ธ $H \le G$, $N \trianglelefteq G$๋กœ๋ถ€ํ„ฐ ๋ช…์ œ์˜ ์žฌ๋ฃŒ๊ฐ€ ๋˜๋Š” factor group $HN/N$์„ ์œ ๋„ํ•˜์ž. ์ด ๊ณผ์ •์—์„œ ์•ž๋ถ€๋ถ„์— ๋‚˜์™”๋˜ Lemma๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค.

$H \le G$, $N \trianglelefteq G$์ด๋ฏ€๋กœ Lemma์— ์˜ํ•ด $HN \le G$์ด๋‹ค.


Normal subgp์— ๋Œ€ํ•ด์„  ์•„๋ž˜์˜ ๋ช…์ œ๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค.

\[\begin{aligned} &\textrm{For} \quad N \le K \le G, \\ &N \trianglelefteq G \implies N \trianglelefteq K \end{aligned}\]

๋ช…์ œ์˜ ์ฆ๋ช…์€ ๊ฐ„๋‹จํ•˜๋‹ˆ ์—ฌ๊ธฐ์—์„œ๋Š” ์ƒ-๋žต ํ•œ๋‹ค.

์ด๋•Œ, $N \le HN \le G$์ด๊ณ , $N \trianglelefteq G$์ด๋ฏ€๋กœ $N \trianglelefteq HN$์ด ๋œ๋‹ค.

$N$์ด $HN$์˜ normal subgroup์ด๋ฏ€๋กœ
$N$์— ๋Œ€ํ•œ $HN$์˜ Factor Group $HN/N$์„ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค!

์ด๋ฒˆ์—๋Š” ๋™ํ˜•์‹์˜ ์šฐ๋ณ€์ธ $H / (H \cap N)$์„ ์œ ๋„ํ•ด๋ณด์ž.

๋งŒ์•ฝ $N \trianglelefteq G$๋ผ๋ฉด, $H \cap N \trianglelefteq H$๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค.

๋”ฐ๋ผ์„œ $(H \cap N)$์— ๋Œ€ํ•œ $H$์˜ Factor Group $H / (H \cap N)$์„ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค!

๋“œ๋””์–ด ์ฆ๋ช…์˜ ๋ณธ๊ฒŒ์ž„์ด๋‹ค!

์•„๋ž˜์™€ ๊ฐ™์€ homomorphism $\phi$๋ฅผ ๋””์ž์ธ ํ•œ๋‹ค.

\[\begin{aligned} \phi: H &\longrightarrow HN \longrightarrow HN / N \\ h &\longmapsto \; h \quad \longmapsto hN \end{aligned}\]

์ด๋•Œ, $\phi$๋Š” homo-์™€ homo-์˜ ํ•ฉ์„ฑ ์ด๋ฏ€๋กœ ์—ญ์‹œ homo-์ด๋‹ค.

๋˜ํ•œ, $\phi(h) = hN$์ด๊ธฐ ๋•Œ๋ฌธ์— $\phi$๋Š” onto์ด๋‹ค.

์ด์ œ ์ด homo- $\phi$์˜ kernel์„ ์ƒ๊ฐํ•ด๋ณด์ž.
์šฐ๋ฆฌ๋Š” $\ker \phi = H \cap N$์ด ๋จ์„ ๋ณด์ผ ๊ฒƒ์ด๋‹ค.

\[h \in \ker \phi \implies \phi(h) = hN = N\]

๋”ฐ๋ผ์„œ $h \in N$์ด๊ณ , $\ker \phi \subseteq H \cap N$์ด๋‹ค.

๋ฐ˜๋Œ€๋กœ,

\[x \in H \cap N \implies \phi(x) = xN = N\]

๋”ฐ๋ผ์„œ $x \in \ker \phi$์ด๊ณ , $\ker \phi \subseteq H \cap N$์ด๋‹ค.

๋”ฐ๋ผ์„œ $\ker \phi = H \cap N$์ด๋‹ค.


FHT์— ์˜ํ•ด $H / {\ker \phi} \cong \phi(H)$์ด๋‹ค. ์ด๋•Œ, $\phi$๊ฐ€ onto ์˜€์œผ๋ฏ€๋กœ $\phi(H) = HN / N$์ด๋‹ค.

๋”ฐ๋ผ์„œ

\[H / (H \cap N) \cong HN / N\]

Image from here



3rd Isomorphism Theorem

Theorem. 3rd Isomorphism Theorem

Let $H, K \trianglelefteq G$, $K \le H$

Then,

\[G / H \; \cong \; (G/K) / (H/K)\]

$\blacksquare$

์œ ๋„ ๊ณผ์ • ์ž์ฒด๋Š” 2nd iso- theorem์— ๋น„ํ•ด์„  ์ •๋ง ์‰ฌ์šด ํŽธ์ด๋‹ค ใ…Žใ…Ž


proof.

Define a homomoprhism $\phi$ as

\[\begin{aligned} \phi: G / K &\longrightarrow G / H \\ gK &\longmapsto gH \end{aligned}\]

Then, check properties of $\phi$.

(1) well-defined

Supp. $gK = gโ€™K$, then

\[\begin{aligned} &gK = g'K \\ &\implies g(g')^{-1}K = K \\ &\implies g(g')^{-1} \in K \\ &\implies g(g')^{-1} \in H \quad (\because K \le H) \\ &\implies g(g')^{-1} H = H \\ &\implies gH = g'H \end{aligned}\]

(2) $\phi$ is onto

clear

(3) $\phi$ is a homo-.

$\phi(g_1 K)\phi(g_2 K) = \phi(g_1 g_2 K)$ (by factor representative opr)

๋”ฐ๋ผ์„œ $\phi$๋Š” homomorphism์ด๋‹ค.

FHT์— ์˜ํ•ด

\[(G/K) / \ker \phi \; \cong \; \phi(G/K)\]

์ด๋•Œ, $\ker \phi$๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ์œ ๋„ํ•  ์ˆ˜ ์žˆ๋‹ค.

\[gK \in \ker \phi \implies \phi(gK) = gH = H \implies g \in H\]

๋”ฐ๋ผ์„œ $gK = hK \in H/K$์ด๊ณ , $\ker \phi \subseteq H/K$๊ฐ€ ๋œ๋‹ค.

๋ฐ˜๋Œ€๋กœ

\[hK \in H/K \implies \phi(hK) = hH = H\]

๋”ฐ๋ผ์„œ $hK \in \ker \phi$์ด๊ณ , $H/K \subseteq \ker \phi$์ด๋‹ค.

๋”ฐ๋ผ์„œ $\ker \phi = H/K$์ด๋‹ค.


๋‹ค์‹œ FHT์— ์˜ํ•ด $(G/K) / \ker \phi \; \cong \; \phi(G/K)$์ด๋ฏ€๋กœ

\[(G/K) / (H/K) \; \cong \; G/H\]

$\blacksquare$



๋“œ๋””์–ด Isomorphism Thm ๊นŒ์ง€ ๋„๋‹ฌํ–ˆ๋‹ค!!

์•ž์œผ๋กœ๋„ ๊ตฐ๋ก ์˜ ๋‹ค์–‘ํ•œ ์ •๋ฆฌ๋“ค๊ณผ ์‚ฌ๋ก€๋“ค์ด ๊ธฐ๋‹ค๋ฆฌ๊ณ  ์žˆ์œผ๋‹ˆ! ๊ธฐ๋Œ€ํ•˜์‹œ๋ผ!!!