2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

6 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)


์ข€๋” ๊ฐ„๋‹จํ•œ ํ˜•ํƒœ์ธ Fermatโ€™s Little Theorem์€ ์ด๊ณณ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค!!


Euler phi function

Theorem.

$\mathbb{Z}_n$์—์„œ zero-divisor๊ฐ€ ์•„๋‹Œ non-zero elt๋“ค์„ ๋ชจ์•„ set $G_n$์„ ์ •์˜ํ•˜์ž.

๊ทธ๋Ÿฌ๋ฉด, $G_n$์€ multiplication modulo $n$์— ๋Œ€ํ•ด Group์„ ์ด๋ฃฌ๋‹ค.

์ด๋•Œ, $\mathbb{Z}_n$์—์„œ $(a, n) \ne 1$์ด ์•„๋‹Œ ์›์†Œ๋“ค์€ ๋ชจ๋‘ zero-divisor๊ฐ€ ๋จ์„ ๊ธฐ์–ตํ•˜๋ผ!

๊ทธ๋ ‡๋‹ค๋ฉด $G_n$๋ฅผ ์•„๋ž˜์™€ ๊ฐ™์ด ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค.

\[G_n = \{ a \in \mathbb{Z}_n \mid (a, n) = 1\}\]

proof.

We will show $G_n = \{ a \in \mathbb{Z}_n \mid (a, n) = 1\}$

($\supseteq$) Let $a \in \mathbb{Z}_n$ s.t. $(a, n) = 1$.

Supp. $ab \equiv 0$, then show $b = 0$; i.e. $a$ is not zero-divisor.

\[\begin{aligned} n \mid ab &\implies n \mid b \quad (\because (a, n) = 1) \\ &\implies b \equiv 0 \quad (\textrm{mod} \; n) \end{aligned}\]

๋”ฐ๋ผ์„œ $a$๋Š” zero-divisor๊ฐ€ ์•„๋‹ˆ๋‹ค!


($\subseteq$) Let $a$ be a not zero-divisor in $\mathbb{Z}_n$.

We will show $(a, n) = 1$.

Let $d = (a, n)$

Supp. $d \ne 1$, (proof by contradiction)

then $a(\frac{n}{d}) = (\frac{a}{n})n \equiv 0$

This means $a$ is a zero-divisor. (๋ชจ์ˆœ!)

๋”ฐ๋ผ์„œ $d = (a, n) = 1$. $\blacksquare$

์ฆ‰, $G_n$์€ non zero-divisor ์›์†Œ์˜ ์ง‘ํ•ฉ์ž„๊ณผ ๋™์‹œ์—, $(a, n) = 1$์ธ ์›์†Œ์˜ ์ง‘ํ•ฉ์ด๋‹ค.

Goal: $G_n$ is group under mutliplicative modulo $n$.


(1) closed under opr

if $(a, n) = 1$, $(b, n) = 1$,

then $(ab, n) = 1$.


(2) identity

$(1, n) = 1$


(3) inverse

For $a \in G_n$, we will find $b$ s.t. $ab = 1$.

Since $(a, n) = 1$, $< a, n > = \mathbb{Z}$

By Bezout's Identity, there exist $x, y \in \mathbb{Z}$

\[ax + ny = 1\]

์–‘๋ณ€์— (mod $n$)์„ ์ทจํ•˜๋ฉด,

\[ax \equiv 1 \quad (\textrm{mod} \; n)\]

๋”ฐ๋ผ์„œ ์ด๋•Œ์˜ $x$๊ฐ€ $a \in G_n$์˜ multiplicative inverse๋‹ค!


By (1) ~ (3)์— ์˜ํ•ด $G_n$์€ group w.r.t. multiplicative modulo $n$.



Definition. Eulder phi function $\varphi(n)$

Let $n \ge 1$ be a natural number.

$\varphi(n)$ := (# of integers $m$ s.t. $(m, n) = 1$)

์ฆ‰, $\varphi(n) = \lvert G_n \rvert$์ธ ๊ฒƒ์ด๋‹ค!!

Examples.

  • $\varphi(12) = \lvert \{ 1, 5, 7, 11 \} \rvert = 4$
  • $\varphi(p) = p-1 = \lvert \mathbb{Z}^{*}_p \rvert$



Eulerโ€™s Theorem

Theorem. Eulerโ€™s generalization of FLT

If $a \in \mathbb{Z}$ and $(a, n) = 1$,

then

\[a^{\varphi(n)} \equiv 1 \quad (\textrm{mod} \; n)\]

FLT์—์„  $n = p$์ธ ๊ฒฝ์šฐ๋ฅผ ๋‹ค๋ค˜๋‹ค.

proof.

๋งŒ์•ฝ $(a, n) = 1$์ด๋ผ๋ฉด, $a$๊ฐ€ ์†ํ•œ $n\mathbb{Z}$์˜ coset $a + n\mathbb{Z}$ ์•ˆ์—๋Š” $n$๋ณด๋‹ค ์ž‘์œผ๋ฉด์„œ $n$๊ณผ ์„œ๋กœ์†Œ์ธ ์ž์—ฐ์ˆ˜ $b$๊ฐ€ ์กด์žฌํ•œ๋‹ค.

์ฆ‰, $a \equiv b$ (mod $n$) $\iff$ $a + n\mathbb{Z} = b + n\mathbb{Z}$.

์ด๋•Œ, modulo multiplication์ด well-defined์ด๋ฏ€๋กœ

$a^{\varphi(n)} \equiv b^{\varphi(n)}$ (mod $n$)์ด๋‹ค.

$b$๋Š” coset $b + n\mathbb{Z}$์˜ representative์ด๋ฏ€๋กœ $b \in \mathbb{Z}_n$์ด๋ฉฐ,
$(b, n) = 1$์ด๋ฏ€๋กœ $b \in G_n$์ด๋‹ค.

์ด๋•Œ, $< b > \le G_n$์ด๋ฏ€๋กœ $\lvert < b > \rvert \mid \lvert G_n \rvert$์ด๋‹ค.

$< b >$์ด cyclic group์ด๋ฏ€๋กœ $b^{\lvert < b > \rvert} \equiv 1$ (mod $n$)์ด๋‹ค.

์ด๋•Œ $\lvert < b > \rvert \mid \lvert G_n \rvert$์ด๋ฏ€๋กœ ์•„๋ž˜๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค.

\[b^{\varphi(n)} \equiv 1 \quad (\textrm{mod} \; n)\]

์ฆ‰,

\[a^{\varphi(n)} \equiv 1 \quad (\textrm{mod} \; n)\]

์ด๋‹ค.


Example.

$\varphi(12) = 4$, then

\[\begin{aligned} 7^{\varphi(12)} &\equiv 1 \quad (\textrm{mod} \; 12) \\ 7^4 &\equiv 1 \quad (\textrm{mod} \; 12) \end{aligned}\]



Application: solve modulo equation

$a$, $b$, $n$ are given
Solve $ax \equiv b$ (mod $n$)

Theorem.

If $(a, n) = 1$,

then $\forall \; b \in \mathbb{Z}$, $ax \equiv b$ (mod $n$) has an โ€œunique solutionโ€ in $\mathbb{Z}_n$.

$(a, n) = 1$ means $a$ has a multiplicative inverse.

Therefore

\[\begin{aligned} ax &\equiv b \qquad (\textrm{mod} \; n) \\ a^{-1}(ax) &\equiv a^{-1}(b) \quad (\textrm{mod} \; n) \\ x &\equiv a^{-1}b \quad (\textrm{mod} \; n) \end{aligned}\]


Theorem.

์ถ”ํ›„์— ์ฑ„์šธ ์˜ˆ์ •