Eulerโs Theorem
2020-2ํ๊ธฐ, ๋ํ์์ โํ๋๋์1โ ์์ ์ ๋ฃ๊ณ ๊ณต๋ถํ ๋ฐ๋ฅผ ์ ๋ฆฌํ ๊ธ์ ๋๋ค. ์ง์ ์ ์ธ์ ๋ ํ์์ ๋๋ค :)
์ข๋ ๊ฐ๋จํ ํํ์ธ Fermatโs Little Theorem์ ์ด๊ณณ์์ ํ์ธํ ์ ์๋ค!!
Euler phi function
Theorem.
$\mathbb{Z}_n$์์ zero-divisor๊ฐ ์๋ non-zero elt๋ค์ ๋ชจ์ set $G_n$์ ์ ์ํ์.
๊ทธ๋ฌ๋ฉด, $G_n$์ multiplication modulo $n$์ ๋ํด Group์ ์ด๋ฃฌ๋ค.
์ด๋, $\mathbb{Z}_n$์์ $(a, n) \ne 1$์ด ์๋ ์์๋ค์ ๋ชจ๋ zero-divisor๊ฐ ๋จ์ ๊ธฐ์ตํ๋ผ!
๊ทธ๋ ๋ค๋ฉด $G_n$๋ฅผ ์๋์ ๊ฐ์ด ์ ์ํ ์ ์๋ค.
\[G_n = \{ a \in \mathbb{Z}_n \mid (a, n) = 1\}\]proof.
We will show $G_n = \{ a \in \mathbb{Z}_n \mid (a, n) = 1\}$
($\supseteq$) Let $a \in \mathbb{Z}_n$ s.t. $(a, n) = 1$.
Supp. $ab \equiv 0$, then show $b = 0$; i.e. $a$ is not zero-divisor.
\[\begin{aligned} n \mid ab &\implies n \mid b \quad (\because (a, n) = 1) \\ &\implies b \equiv 0 \quad (\textrm{mod} \; n) \end{aligned}\]๋ฐ๋ผ์ $a$๋ zero-divisor๊ฐ ์๋๋ค!
($\subseteq$) Let $a$ be a not zero-divisor in $\mathbb{Z}_n$.
We will show $(a, n) = 1$.
Let $d = (a, n)$
Supp. $d \ne 1$, (proof by contradiction)
then $a(\frac{n}{d}) = (\frac{a}{n})n \equiv 0$
This means $a$ is a zero-divisor. (๋ชจ์!)
๋ฐ๋ผ์ $d = (a, n) = 1$. $\blacksquare$
์ฆ, $G_n$์ non zero-divisor ์์์ ์งํฉ์๊ณผ ๋์์, $(a, n) = 1$์ธ ์์์ ์งํฉ์ด๋ค.
Goal: $G_n$ is group under mutliplicative modulo $n$.
(1) closed under opr
if $(a, n) = 1$, $(b, n) = 1$,
then $(ab, n) = 1$.
(2) identity
$(1, n) = 1$
(3) inverse
For $a \in G_n$, we will find $b$ s.t. $ab = 1$.
Since $(a, n) = 1$, $< a, n > = \mathbb{Z}$
By Bezout's Identity, there exist $x, y \in \mathbb{Z}$
\[ax + ny = 1\]์๋ณ์ (mod $n$)์ ์ทจํ๋ฉด,
\[ax \equiv 1 \quad (\textrm{mod} \; n)\]๋ฐ๋ผ์ ์ด๋์ $x$๊ฐ $a \in G_n$์ multiplicative inverse๋ค!
By (1) ~ (3)์ ์ํด $G_n$์ group w.r.t. multiplicative modulo $n$.
Definition. Eulder phi function $\varphi(n)$
Let $n \ge 1$ be a natural number.
$\varphi(n)$ := (# of integers $m$ s.t. $(m, n) = 1$)
์ฆ, $\varphi(n) = \lvert G_n \rvert$์ธ ๊ฒ์ด๋ค!!
Examples.
- $\varphi(12) = \lvert \{ 1, 5, 7, 11 \} \rvert = 4$
- $\varphi(p) = p-1 = \lvert \mathbb{Z}^{*}_p \rvert$
Eulerโs Theorem
Theorem. Eulerโs generalization of FLT
If $a \in \mathbb{Z}$ and $(a, n) = 1$,
then
\[a^{\varphi(n)} \equiv 1 \quad (\textrm{mod} \; n)\]FLT์์ $n = p$์ธ ๊ฒฝ์ฐ๋ฅผ ๋ค๋ค๋ค.
proof.
๋ง์ฝ $(a, n) = 1$์ด๋ผ๋ฉด, $a$๊ฐ ์ํ $n\mathbb{Z}$์ coset $a + n\mathbb{Z}$ ์์๋ $n$๋ณด๋ค ์์ผ๋ฉด์ $n$๊ณผ ์๋ก์์ธ ์์ฐ์ $b$๊ฐ ์กด์ฌํ๋ค.
์ฆ, $a \equiv b$ (mod $n$) $\iff$ $a + n\mathbb{Z} = b + n\mathbb{Z}$.
์ด๋, modulo multiplication์ด well-defined์ด๋ฏ๋ก
$a^{\varphi(n)} \equiv b^{\varphi(n)}$ (mod $n$)์ด๋ค.
$b$๋ coset $b + n\mathbb{Z}$์ representative์ด๋ฏ๋ก $b \in \mathbb{Z}_n$์ด๋ฉฐ,
$(b, n) = 1$์ด๋ฏ๋ก $b \in G_n$์ด๋ค.
์ด๋, $< b > \le G_n$์ด๋ฏ๋ก $\lvert < b > \rvert \mid \lvert G_n \rvert$์ด๋ค.
$< b >$์ด cyclic group์ด๋ฏ๋ก $b^{\lvert < b > \rvert} \equiv 1$ (mod $n$)์ด๋ค.
์ด๋ $\lvert < b > \rvert \mid \lvert G_n \rvert$์ด๋ฏ๋ก ์๋๊ฐ ์ฑ๋ฆฝํ๋ค.
\[b^{\varphi(n)} \equiv 1 \quad (\textrm{mod} \; n)\]์ฆ,
\[a^{\varphi(n)} \equiv 1 \quad (\textrm{mod} \; n)\]์ด๋ค.
Example.
$\varphi(12) = 4$, then
\[\begin{aligned} 7^{\varphi(12)} &\equiv 1 \quad (\textrm{mod} \; 12) \\ 7^4 &\equiv 1 \quad (\textrm{mod} \; 12) \end{aligned}\]Application: solve modulo equation
Solve $ax \equiv b$ (mod $n$)
Theorem.
If $(a, n) = 1$,
then $\forall \; b \in \mathbb{Z}$, $ax \equiv b$ (mod $n$) has an โunique solutionโ in $\mathbb{Z}_n$.
$(a, n) = 1$ means $a$ has a multiplicative inverse.
Therefore
\[\begin{aligned} ax &\equiv b \qquad (\textrm{mod} \; n) \\ a^{-1}(ax) &\equiv a^{-1}(b) \quad (\textrm{mod} \; n) \\ x &\equiv a^{-1}b \quad (\textrm{mod} \; n) \end{aligned}\]Theorem.
์ถํ์ ์ฑ์ธ ์์