2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

4 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)


์šฐ๋ฆฌ๋Š” $\mathbb{Z}_n$์ด Ring์ž„์„ ์ด๋ฏธ ์•Œ๊ณ  ์žˆ๋‹ค.

๊ทธ๋Ÿฐ๋ฐ, ์ด $\mathbb{Z}_n$์€ ์‚ฌ์‹ค ์•„๋ž˜์˜ Factor Ring์œผ๋กœ๋ถ€ํ„ฐ ์œ ๋„๋˜๋Š” Ring์ด๋‹ค!

\[\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z}_n\]


๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” $\mathbb{Z}_p$์˜ ๊ฒฝ์šฐ Ring๋ณด๋‹ค ์ƒ์œ„ ๋‹จ๊ณ„์ธ Field๊ฐ€ ๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค!!

$\mathbb{Z}_p$์—์„œ ๊ณฑ์…ˆ์— ๋Œ€ํ•œ ๊ตฐ์ธ $\mathbb{Z}^{*}_p$๋ฅผ ์ƒ๊ฐํ•ด๋ณด์ž.

\[\mathbb{Z}^{*}_p = \{1, 2, ..., p-1 \}\]

์ฆ‰, $\lvert \mathbb{Z}^{*}_p \rvert = p-1$์ด๋‹ค.

์ด๋•Œ, $a \in \mathbb{Z}^{*}_p$์— ๋Œ€ํ•ด $a$์˜ ์œ„์ˆ˜๋Š” $\mathbb{Z}^{*}_p$์˜ ์œ„์ˆ˜์˜ ์•ฝ์ˆ˜์ด๋ฏ€๋กœ $\lvert a \rvert \mid (p-1)$๊ฐ€ ๋œ๋‹ค.

๋”ฐ๋ผ์„œ $a^{p-1} = 1$์ด ๋œ๋‹ค.

์ด๊ฒƒ์„ $\mathbb{Z}$์—์„œ ๋‹ค์‹œ ์“ฐ๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[a^{p-1} \equiv 1 \quad (\textrm{mod} \; p)\]

์ด๋•Œ, $a$๋ฅผ $\mathbb{Z}^{*}_p$์—์„œ ๋ฝ‘์•˜์œผ๋ฏ€๋กœ $a \not\equiv 0$ (mod $p$)์ด๋‹ค. ์ฆ‰, $p \not\mid a$์ด๋‹ค.

์œ„์˜ ์‚ฌ์‹ค์„ ์ž˜ ์ •๋ฆฌํ•˜์—ฌ ๊ธฐ์ˆ ํ•œ ๊ฒƒ์ด ๋ฐ”๋กœ Fermatโ€™ Little Theorem์ด๋‹ค.



Fermatโ€™s Little Theorem

Theorem. Fermatโ€™s Little Theorem

Let $p$ be a prime,

If $a \in \mathbb{Z}$, and $p \not\mid a$,

then $p \mid (a^{p-1} + 1)$ $\iff$ $a^{p-1} \equiv 1$ (mod $p$).


์ด๋•Œ, ๋งŒ์•ฝ $p \mid a$๋ผ๋ฉด,
$a^{p-1} \equiv 0$ (mod $p$)๊ฐ€ ๋œ๋‹ค!

Corollary.

If $a \in \mathbb{Z}$, then $a^p \equiv a$ (mod $p$).

proof.

(Case 1) $p \mid a$

(Case 2) $p \not\mid a$


Examples

Example 1.

$8^{103} \equiv \; ?$ (mod 13)

Sol.

By Fermat-, $8^{12} \equiv 1$ (mod 13)

$\implies$ $(8^{12})^{8} \cdot 8^7 \equiv 1 \cdot 8^7$ (mod 13)

$\implies$ $8^7 \equiv (-5)^7 \equiv (25)^3 \cdot (-5)$

์ด๋•Œ, $25 \equiv -1$ (mod 13) ์ด๋ฏ€๋กœ

$\implies$ $(-1)^3 (-5) \equiv 5$ (mod 13)


Example 2.

$2^{11213} \equiv \; ?$ (mod 11)

Sol.

By Fermat-, $2^{10} \equiv 1$ (mod 11)

$(2^{10})^{1121} \cdot 2^3 \equiv 1 \cdot 8$ (mod 11)



Example 3.

Show that, for $\forall \; n \in \mathbb{N}$, $15 \mid (n^{33} - n)$.

Sol.

$15 \mid (n^{33} - n)$. ์ฆ‰, $n^{33} - n = n(n^{32} - 1) \equiv 0$ (mod 15)์ž„์„ ๋ณด์ด๋ฉด ๋œ๋‹ค.


์ด๋•Œ, $15 = 3 \times 5$์ด๊ณ , Fermat์˜ ์ •๋ฆฌ์— ๋”ฐ๋ฅด๋ฉด

  • for $3 \not\mid n$, $n^2 \equiv 1$ (mod 3)
  • for $5 \not\mid n$, $n^4 \equiv 1$ (mod 5)


์ด์ œ $n^{32}$๋ฅผ Fermat ์ •๋ฆฌ๋ฅผ ์ด์šฉํ•ด ํ‘œํ˜„ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

  • if $3 \not\mid n$, $n^{32} \equiv (n^2)^{16} \equiv 1$ (mod 3)
  • if $5 \not\mid n$, $n^{32} \equiv (n^4)^{8} \equiv 1$ (mod 5)


์ผ€์ด์Šค๋ฅผ ๋‚˜๋ˆ„์–ด $n^{32} - 1$์„ ๋ถ„์„ํ•ด๋ณด์ž.


1. $3 \not\mid n$ and $5 \not\mid n$

then, $3 \mid (n^{32} - 1)$ and $5 \mid (n^{32}-1)$์„ ์˜๋ฏธํ•œ๋‹ค.

๋”ฐ๋ผ์„œ $15 \mid (n^{32} - 1)$์„ ์–ป๋Š”๋‹ค.

๋”ฐ๋ผ์„œ $(n^{32} - 1) \equiv 0$ (mod 15)์ด๋‹ค.


2. $3 \mid n$ and $5 \mid n$

์ด๊ฒƒ์€ $15 \mid n$๋ฅผ ์˜๋ฏธํ•˜๋ฏ€๋กœ $15 \mid n(n^{32}-1)$์ด๋‹ค.


3. $3 \not\mid n$ and $5 \mid n$

$3 \mid (n^{32} - 1)$์ด๋ฏ€๋กœ $3 \mid n(n^{32} - 1)$์ด๋‹ค. ๋˜ํ•œ, $5 \mid n(n^{32} - 1)$์ด๋ฏ€๋กœ

$15 \mid n(n^{32}-1)$์ด๋‹ค.


4. $3 \mid n$ and $5 \not\mid n$

3.์˜ ๊ฒฝ์šฐ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€์ด๋‹ค.



Fermatโ€™s Little Theorem์€ Ring์˜ Multiplicative group์œผ๋กœ๋ถ€ํ„ฐ ์‰ฝ๊ฒŒ ์œ ๋„ํ•  ์ˆ˜ ์žˆ๋Š” ์„ฑ์งˆ์ด์—ˆ๋‹ค ใ…Žใ…Ž

ํ•˜.์ง€.๋งŒ.!

Euler ํ˜•๋‹˜์ด ์šฐ๋ฆฌ๋ฅผ ์œ„ํ•ด FLT๋ฅผ ์ผ๋ฐ˜ํ™” ํ•ด์ฃผ์…จ๋‹ค ใ… ใ… 

Eulerโ€™s Theorem