2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

13 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)



Definition. Polynomial from Ring $R$

Let $R$ be a ring,

a polynomial $f(x)$ with coefficients in $R$ is an infinite formal sum

\[\sum^{\infty}_{i=0} {a_i x^i} = a_0 + a_1 x + a_2 x^2 + \cdots\]

where $a_i \in R$, and for finite number of $a_i \ne 0$.

Properties.

1. polynomial addition

\[f(x) + g(x) = \sum^{\infty}_{i=0} {a_i x^i} + \sum^{\infty}_{i=0} {b_i x^i} = \sum^{\infty}_{i=0} {(a_i + b_i) x^i}\]

2. **polynomial multiplication **

\[\begin{aligned} f(x) \cdot g(x) &= \left( \sum^{\infty}_{i=0} {a_i x^i} \right) \cdot \left( \sum^{\infty}_{i=0} {b_i x^i} \right) \\ &= \sum^{\infty}_{k=0} \left( \sum^{k}_{i+j = k} {a_i b_j } \right) x^k \\ &= \sum^{\infty}_{i=0} \left( \sum^{i}_{j = 0} {a_{i-j} b_j } \right) x^k \end{aligned}\]



Theorem.

If $R$ is a ring, also $R[x]$ is a ring.

If $R$ is a commutative ring, also $R[x]$ is a commutative ring.

If $R$ has the unity, also $R[x]$ has the unity.



Evaluation Homomorphism

Theorem 22.4 The Evaluation Homomorphism for Field Theory; 체둠을 μœ„ν•œ λŒ€μž… μ€€λ™ν˜•μ‚¬μƒ

Let $F$ be a subfield of a field $E$, and $\alpha \in E$.

The map $\phi_\alpha: F[x] \longrightarrow E$ is defined by

\[\phi_\alpha (a_0 + a_1 x + a_x x^2 + \cdots) = a_0 + a_1 \alpha + a_2 \alpha^2 + \cdots\]

then $\phi_\alpha$ is a homomorphism.

λ˜ν•œ $\phi_\alpha(x) = \alpha$이며,

$\phi_\alpha$ maps $F$ isomorphically by the identity map;
for $a \in F$, $\phi_\alpha(a) = a$

즉, $\phi_\alpha$ is the β€œevaluation at $\alpha$”.

proof.

Show $\phi_\alpha$ is a ring homomorphism.

(1) $\phi_\alpha(f+g) = \phi_\alpha(f) + \phi_\alpha(g)$

(2) $\phi_\alpha(f \cdot g) = \phi_\alpha(f) \cdot \phi_\alpha(g)$

(1), (2)λ₯Ό 잘 체크해보면 OK



Division Algorithm for Polynomial Ring

Theorem. Division Algorithm for Polynomial Ring

Let $F$ be a field.

$f(x) = a_n x^n + \cdots + a_0$

$g(x) = b_m x^m + \cdots + b_0$

then, there exist a unique $q(x), r(x) \in F[x]$

s.t. $f(x) = q(x) \cdot g(x) + r(x)$ with $\deg(r(x)) < m$.

proof.

(Case 1: $n < m$)

If $n < m$, then $f(x) = 0 \cdot g(x) + f(x)$ with $\deg(f(x)) = n < m$.


(Case 2: $n \ge m$)

Let’s think of a set $S = \{ f(x) - g(x)s(x) \mid s(x) \in F[x] \}$.


λ§Œμ•½ $0 \in S$라면, $f(x) - g(x)s(x) = 0$이 λ˜λŠ” $s(x) \in F[x]$κ°€ μ‘΄μž¬ν•œλ‹€.

λ§Œμ•½ $0 \notin S$라면, $S$의 μ›μ†Œ 쀑 κ°€μž₯ μ°¨μˆ˜κ°€ μž‘μ€ 닀항식 $r(x)$λ₯Ό μ„ νƒν•˜μž.

그러면, $r(x) \in S$에 λŒ€μ‘ν•˜λŠ” μ λ‹Ήν•œ $q(x) \in F[x]$κ°€ μ‘΄μž¬ν•˜μ—¬

\[f(x) = q(x) \cdot g(x) + r(x)\]

λ₯Ό λ§Œμ‘±ν•œλ‹€.

μ΄λ•Œ, μš°λ¦¬λŠ” $r(x)$의 μ°¨μˆ˜κ°€ $m$보닀 μž‘λ‹€λŠ” 것을 보여야 ν•œλ‹€.

$r(x)$λ₯Ό μ•„λž˜μ™€ 같이 μ„€μ •ν•˜μž.

\[r(x) = c_t x^t + c_{t-1} x^{t-1} + \cdots + c_0\]

그리고 (proof by contradiction)을 μœ„ν•΄ $t \ge m$으둜 λ‘μž.

그러면, μ•„λž˜μ˜ 닀항식을 μƒκ°ν•΄λ³΄μž.

\[\begin{equation} \left(f(x) - q(x)g(x)\right) - (c_t / b_m) x^{t-m} g(x) = r(x) - (c_t / b_m) x^{t-m} g(x) \end{equation}\]

μ΄λ•Œ $(c_t / b_m) x^{t-m} g(x)$λŠ” 졜고 차항이 $(c_t / b_m) x^{t-m} \cdot b_m x^m = c_t x^t$κ°€ λœλ‹€.

즉, Eq.(1)은 $r(x) - (c_t x^t + \cdots)$κ°€ λ˜λ―€λ‘œ

Eq.(1)은 μ°¨μˆ˜κ°€ $t$λ³΄λ‹€λŠ” μž‘μœΌλ©΄μ„œ $S$에 μ›μ†Œκ°€ λœλ‹€.

\[\begin{aligned} \left(f(x) - q(x)g(x)\right) - (c_t / b_m) x^{t-m} g(x) &= r(x) - (c_t / b_m) x^{t-m} g(x) \\ &= f(x) - g(x) \cdot \left( q(x) + (c_t / b_m) x^{t-m} \right) \in S \end{aligned}\]

이것은 $r(x)$이 $S$의 μ›μ†Œ 쀑 κ°€μž₯ μž‘μ€ 차수λ₯Ό κ°€μ§„λ‹€λŠ” 사싀에 λͺ¨μˆœμ΄λ‹€!

λ”°λΌμ„œ $r(x)$의 μ°¨μˆ˜λŠ” $g(x)$의 차수 $m$보닀 μž‘μ•„μ•Ό ν•œλ‹€. $\blacksquare$

(Uniqueness)

μœ μΌμ„±μ„ 보이기 μœ„ν•΄ $f(x)$λ₯Ό 두 가지 λ°©μ‹μœΌλ‘œ ν‘œν˜„ν•΄λ³΄μž.

  • $f(x) = q_1(x) \cdot g(x) + r_1(x)$
  • $f(x) = q_2(x) \cdot g(x) + r_2(x)$

두 식을 λΉΌλ©΄,

\[\begin{aligned} f(x) - f(x) &= g(x) \cdot \left( q_1(x) - q_2(x) \right) + \left( r_1(x) - r_2(x) \right) \\ g(x) \cdot \left( q_1(x) - q_2(x) \right) &= r_1(x) - r_2(x) \end{aligned}\]

μ΄λ•Œ, $q_1(x) - q_2(x) \ne 0$라면, $g(x) \cdot \left( q_1(x) - q_2(x) \right)$의 μ°¨μˆ˜λŠ” $g(x)$의 차수 $m$보닀 더 크게 λœλ‹€.

그런데, $r_1(x) - r_2(x)$λŠ”

  • $r_1(x) - r_2(x) = 0$μ΄κ±°λ‚˜
  • $r_1(x) - r_2(x)$의 μ°¨μˆ˜λŠ” μ›λž˜ $g(x)$의 차수 $m$보닀 μž‘μ•˜μœΌλ―€λ‘œ

μš°λ³€μ˜ μ°¨μˆ˜λŠ” $m$보닀 μž‘κ²Œ λœλ‹€.

λ”°λΌμ„œ $q_1(x) - q_2(x) \ne 0$이 될 수 μ—†μœΌλ―€λ‘œ $q_1(x) = q_2(x)$κ°€ λœλ‹€.

μ’Œλ³€μ΄ 0이 λ˜μ—ˆμœΌλ―€λ‘œ μš°λ³€ μ—­μ‹œ 0이 λ˜μ–΄ $r_1(x) = r_2(x)$κ°€ λœλ‹€.

λ”°λΌμ„œ $F[x]$에 λŒ€ν•œ Division Algorithm의 κ²°κ³ΌλŠ” μœ μΌν•˜λ‹€. $\blacksquare$



zero of polynomial

Definition.zero of polynomial; polynomial의 근

Let field $F$ be a sub-field of field $E$, and $\alpha \in E$.

For a ring $F[x]$, $f(x) \in F[x]$, and $\phi_\alpha: F[x] \longrightarrow E$ is an evaluation homormophism from Theorem 22.4

if $f(\alpha) = 0$, then $\alpha$ is a zero of $f(x)$.



Factor Theorem

Corollary. Factor Theorem; 인수 정리

For $a \in F$,

$a$ is zero of $f(x) \in F[x]$ $\iff$ $(x - a) \mid f(x)$ in $F[x]$.


λ‹€λ₯΄κ²Œ ν‘œν˜„ν•˜λ©΄,

$a$ is zero of $f(x) \in F[x]$ $\iff$ $f(x) = (x-a)g(x)$ for some $g(x) \in F[x]$.

그리고

For $f(x) \in F[x]$,

$f(a) = 0$ $\iff$ $(x - a) \mid f(x)$ in $F[x]$.

proof.

($\impliedby$) Supp. $(x-a) \mid f(x)$ in $F[x]$.

$\implies$ $f(x) = (x-a)g(x)$ for some $g(x) \in F[x]$

$\implies$ evaluation $x$ at $a$, then $f(a) = (a-a) \cdot g(a) = 0 \cdot (a) = 0$

즉, $a$ is zero of $f(x)$. $\blacksquare$

($\implies$) Supp. $f(a) = 0$.

$f(x)$λ₯Ό $(x-a)$둜 λ‚˜λˆ„μž. 그러면, μ•žμ—μ„œ 보인 Ring Division Algorithm에 μ˜ν•΄

$\implies$ $f(x) = q(x)(x-a) + r(x)$ where $q(x), r(x) \in F[x]$

μ΄λ•Œ, $(x-a)$의 μ°¨μˆ˜κ°€ 1μ΄λ―€λ‘œ $\deg (r(x)) < 1$이 λœλ‹€.

λ”°λΌμ„œ $r(x) = r$둜 μƒμˆ˜κ°€ λœλ‹€.

$f(x) = q(x)(x-a) + r$


이제 evaluation $x$ at $a$λ₯Ό μ μš©ν•˜λ©΄, 처음의 κ°€μ • $f(a) = 0$에 μ˜ν•΄

$f(a) = q(a) (a-a) + r = 0 + r = 0$이 λœλ‹€.

즉, $f(x) = q(x) (x- a)$κ°€ λ˜λ―€λ‘œ

$(x-a) \mid f(x)$κ°€ λœλ‹€. $\blacksquare$



Corollary 23.5

Corollary 23.5

A non-zero poly-. $f(x) \in F[x]$ of $\deg = n$ has at most $n$ zeros in field $F$.

proof.

(Induction on $\deg f(x)$)

Let $a_1$, …, $a_k$ be zeros of $f(x)$

$f(a_1) = 0$ $\implies$ $f(x) = (x-a_1) q_1(x)$

그리고 $\deg g_1 = \deg f - 1 = n-1$이 λœλ‹€.


이 과정을 λ°˜λ³΅ν•˜λ©΄, 더이상 ν•΄λ₯Ό 갖지 μ•ŠλŠ” 지점 $q_r(x)$에 도달할 것이닀.

\[f(x) = (x-a_1) \cdots (x-a_r) q_r(x)\]

$f(x)$의 μ°¨μˆ˜κ°€ $n$μ΄λ―€λ‘œ μš°λ³€μ—λŠ” λ§Žμ•„μ•Ό $n$개의 $(x-a_i)$κ°€ λ“±μž₯ν•  κ²ƒμ΄λ―€λ‘œ $r \le n$을 μ–»λŠ”λ‹€.

λ”°λΌμ„œ (# of zeros of $f(x)$)λŠ” λ§Žμ•„μ•Ό $n$κ°œλ‹€. $\blacksquare$



Corollary 23.6

Corollary 23.6

$(F^{*}, \cdot\;)$λŠ” Field $F$에 λŒ€ν•œ κ³±μ…ˆκ΅°μ΄λ‹€.

μ΄λ•Œ, $(F^{*}, \cdot\;)$의 λͺ¨λ“  finite subgroup은 λͺ¨λ“  cyclic group이닀.

λ§Œμ•½ Field $F$κ°€ finite field라면, $(F^{*}, \cdot\;)$λŠ” Cyclic이닀!

proof.

Let $G \le (F^{*}, \cdot\;)$.

If $G$ is cyclic, then $G$ is finite abelian.

λ”°λΌμ„œ F.T. of f.g. abelian에 μ˜ν•΄ $G$λ₯Ό μ λ‹Ήν•œ finite cyclic group의 direct product둜 ν‘œν˜„ν•  수 μžˆλ‹€.

\[G \cong \mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} \times \cdots \mathbb{Z}_{d_r}\]

(μ΄λ•Œ, $d_i$λŠ” μ†Œμˆ˜λ“€μ˜ 곱이닀.)


cyclic group $\mathbb{Z}_{n_i}$ 각각을 κ³±μ…ˆκ΅°μœΌλ‘œμ„œ μƒκ°ν•˜μž.

$m = \gcd(d_i)_{i \in \Lambda}$둜 μ •μ˜ν•˜λ©΄,

$m \le d_1 d_2 \cdots d_r$이 λœλ‹€.


$a_i \in \mathbb{Z}_{d_i}$에 λŒ€ν•΄,

$(a_{n_i})^{d_i} = 1$κ°€ μ„±λ¦½ν•œλ‹€.

$d_i \mid m$μ΄λ―€λ‘œ $(a_{n_i})^m = 1$κ°€ μ„±λ¦½ν•œλ‹€.

이것은 $G$λ₯Ό \(\mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} \times \cdots \mathbb{Z}_{d_r}\) μ•„λž˜μ—μ„œ ν•΄μ„ν•œ 것이닀. 이것을 λ‹€μ‹œ $G$μ—μ„œ ν•΄μ„ν•˜λ©΄ μ•„λž˜μ™€ κ°™λ‹€.

For $\alpha \in G$, $\alpha^m = 1$

λ”°λΌμ„œ λͺ¨λ“  $G$의 μ›μ†Œκ°€ $x^{m} - 1$의 ν•΄κ°€ λœλ‹€.


μš°λ¦¬λŠ” $x^m - 1$에 λŒ€ν•΄ $\lvert G \rvert$ 만큼의 ν•΄κ°€ μžˆμŒμ„ μ•Œκ³  μžˆλ‹€. 그리고 $\lvert G \rvert = d_1 d_2 \cdots d_r$이닀. (μ™œλƒν•˜λ©΄, \(G \cong \mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} \times \cdots \mathbb{Z}_{d_r}\)이기 λ•Œλ¬Έμ΄λ‹€.)

μ΄λ•Œ, $x^m - 1$의 차수 $m$은 μ•žμ—μ„œ 보인 Corollary 23.5에 μ˜ν•΄ $m \ge \lvert G \rvert = d_1 d_2 \cdots d_r$이닀.


  • $m \le d_1 d_2 \cdots d_r$ (by $\gcd$)
  • $m \ge d_1 d_2 \cdots d_r$ (by Lemma 23.5)

κ°€ μ„±λ¦½ν•˜λ―€λ‘œ $m = d_1 d_2 \cdots d_r$이닀.

이것이 μ„±λ¦½ν•œλ‹€λŠ” 것은 $d_i$듀이 λͺ¨λ‘ μ„œλ‘œμ†Œ λΌλŠ” 말이닀.

λ”°λΌμ„œ

\[\mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} \times \cdots \mathbb{Z}_{d_r} \cong \mathbb{Z}_m \cong G\]

κ°€ λ˜λ―€λ‘œ $G$λŠ” cyclic group이닀. $\blacksquare$



Examples.

For $(\mathbb{R}^{*}, \cdot \;)$,

\[\begin{aligned} \{-1, +1 \} \cong \mathbb{Z}_2 \le (R^{*}, \cdot\;) \end{aligned}\]


For $(\mathbb{C}^{*}, \cdot \;)$,

\[\begin{aligned} \{\pm 1, \pm i \} \cong \mathbb{Z}_4 \le (R^{*}, \cdot\;) \end{aligned}\]

이것을

”$\mathbb{Z}_4$ can be embedded into $(\mathbb{C}^{*}, \cdot \;)$.”

\[\mathbb{Z}_4 \hookrightarrow (\mathbb{C}^{*}, \cdot \;)\]

라고 ν•œλ‹€.


(Generalization)

For $(\mathbb{C}^{*}, \cdot \;)$,

\[\begin{aligned} \mathbb{Z}_n \hookrightarrow (\mathbb{C}^{*}, \cdot \;) \end{aligned}\]

μž„μ„ 보여라.


Reference