Polynomial Ring
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Definition. Polynomial from Ring $R$
Let $R$ be a ring,
a polynomial $f(x)$ with coefficients in $R$ is an infinite formal sum
\[\sum^{\infty}_{i=0} {a_i x^i} = a_0 + a_1 x + a_2 x^2 + \cdots\]where $a_i \in R$, and for finite number of $a_i \ne 0$.
Properties.
1. polynomial addition
\[f(x) + g(x) = \sum^{\infty}_{i=0} {a_i x^i} + \sum^{\infty}_{i=0} {b_i x^i} = \sum^{\infty}_{i=0} {(a_i + b_i) x^i}\]2. **polynomial multiplication **
\[\begin{aligned} f(x) \cdot g(x) &= \left( \sum^{\infty}_{i=0} {a_i x^i} \right) \cdot \left( \sum^{\infty}_{i=0} {b_i x^i} \right) \\ &= \sum^{\infty}_{k=0} \left( \sum^{k}_{i+j = k} {a_i b_j } \right) x^k \\ &= \sum^{\infty}_{i=0} \left( \sum^{i}_{j = 0} {a_{i-j} b_j } \right) x^k \end{aligned}\]Theorem.
If $R$ is a ring, also $R[x]$ is a ring.
If $R$ is a commutative ring, also $R[x]$ is a commutative ring.
If $R$ has the unity, also $R[x]$ has the unity.
Evaluation Homomorphism
Theorem 22.4 The Evaluation Homomorphism for Field Theory; μ²΄λ‘ μ μν λμ
μ€λνμ¬μ
Let $F$ be a subfield of a field $E$, and $\alpha \in E$.
The map $\phi_\alpha: F[x] \longrightarrow E$ is defined by
\[\phi_\alpha (a_0 + a_1 x + a_x x^2 + \cdots) = a_0 + a_1 \alpha + a_2 \alpha^2 + \cdots\]then $\phi_\alpha$ is a homomorphism.
λν $\phi_\alpha(x) = \alpha$μ΄λ©°,
$\phi_\alpha$ maps $F$ isomorphically by the identity map;
for $a \in F$, $\phi_\alpha(a) = a$
μ¦, $\phi_\alpha$ is the βevaluation at $\alpha$β.
proof.
Show $\phi_\alpha$ is a ring homomorphism.
(1) $\phi_\alpha(f+g) = \phi_\alpha(f) + \phi_\alpha(g)$
(2) $\phi_\alpha(f \cdot g) = \phi_\alpha(f) \cdot \phi_\alpha(g)$
(1), (2)λ₯Ό μ 체ν¬ν΄λ³΄λ©΄ OK
Division Algorithm for Polynomial Ring
Theorem. Division Algorithm for Polynomial Ring
Let $F$ be a field.
$f(x) = a_n x^n + \cdots + a_0$
$g(x) = b_m x^m + \cdots + b_0$
then, there exist a unique $q(x), r(x) \in F[x]$
s.t. $f(x) = q(x) \cdot g(x) + r(x)$ with $\deg(r(x)) < m$.
proof.
(Case 1: $n < m$)
If $n < m$, then $f(x) = 0 \cdot g(x) + f(x)$ with $\deg(f(x)) = n < m$.
(Case 2: $n \ge m$)
Letβs think of a set $S = \{ f(x) - g(x)s(x) \mid s(x) \in F[x] \}$.
λ§μ½ $0 \in S$λΌλ©΄, $f(x) - g(x)s(x) = 0$μ΄ λλ $s(x) \in F[x]$κ° μ‘΄μ¬νλ€.
λ§μ½ $0 \notin S$λΌλ©΄, $S$μ μμ μ€ κ°μ₯ μ°¨μκ° μμ λ€νμ $r(x)$λ₯Ό μ ννμ.
κ·Έλ¬λ©΄, $r(x) \in S$μ λμνλ μ λΉν $q(x) \in F[x]$κ° μ‘΄μ¬νμ¬
\[f(x) = q(x) \cdot g(x) + r(x)\]λ₯Ό λ§μ‘±νλ€.
μ΄λ, μ°λ¦¬λ $r(x)$μ μ°¨μκ° $m$λ³΄λ€ μλ€λ κ²μ 보μ¬μΌ νλ€.
$r(x)$λ₯Ό μλμ κ°μ΄ μ€μ νμ.
\[r(x) = c_t x^t + c_{t-1} x^{t-1} + \cdots + c_0\]κ·Έλ¦¬κ³ (proof by contradiction)μ μν΄ $t \ge m$μΌλ‘ λμ.
κ·Έλ¬λ©΄, μλμ λ€νμμ μκ°ν΄λ³΄μ.
\[\begin{equation} \left(f(x) - q(x)g(x)\right) - (c_t / b_m) x^{t-m} g(x) = r(x) - (c_t / b_m) x^{t-m} g(x) \end{equation}\]μ΄λ $(c_t / b_m) x^{t-m} g(x)$λ μ΅κ³ μ°¨νμ΄ $(c_t / b_m) x^{t-m} \cdot b_m x^m = c_t x^t$κ° λλ€.
μ¦, Eq.(1)μ $r(x) - (c_t x^t + \cdots)$κ° λλ―λ‘
Eq.(1)μ μ°¨μκ° $t$보λ€λ μμΌλ©΄μ $S$μ μμκ° λλ€.
\[\begin{aligned} \left(f(x) - q(x)g(x)\right) - (c_t / b_m) x^{t-m} g(x) &= r(x) - (c_t / b_m) x^{t-m} g(x) \\ &= f(x) - g(x) \cdot \left( q(x) + (c_t / b_m) x^{t-m} \right) \in S \end{aligned}\]μ΄κ²μ $r(x)$μ΄ $S$μ μμ μ€ κ°μ₯ μμ μ°¨μλ₯Ό κ°μ§λ€λ μ¬μ€μ λͺ¨μμ΄λ€!
λ°λΌμ $r(x)$μ μ°¨μλ $g(x)$μ μ°¨μ $m$λ³΄λ€ μμμΌ νλ€. $\blacksquare$
(Uniqueness)
μ μΌμ±μ 보μ΄κΈ° μν΄ $f(x)$λ₯Ό λ κ°μ§ λ°©μμΌλ‘ ννν΄λ³΄μ.
- $f(x) = q_1(x) \cdot g(x) + r_1(x)$
- $f(x) = q_2(x) \cdot g(x) + r_2(x)$
λ μμ λΉΌλ©΄,
\[\begin{aligned} f(x) - f(x) &= g(x) \cdot \left( q_1(x) - q_2(x) \right) + \left( r_1(x) - r_2(x) \right) \\ g(x) \cdot \left( q_1(x) - q_2(x) \right) &= r_1(x) - r_2(x) \end{aligned}\]μ΄λ, $q_1(x) - q_2(x) \ne 0$λΌλ©΄, $g(x) \cdot \left( q_1(x) - q_2(x) \right)$μ μ°¨μλ $g(x)$μ μ°¨μ $m$λ³΄λ€ λ ν¬κ² λλ€.
κ·Έλ°λ°, $r_1(x) - r_2(x)$λ
- $r_1(x) - r_2(x) = 0$μ΄κ±°λ
- $r_1(x) - r_2(x)$μ μ°¨μλ μλ $g(x)$μ μ°¨μ $m$λ³΄λ€ μμμΌλ―λ‘
μ°λ³μ μ°¨μλ $m$λ³΄λ€ μκ² λλ€.
λ°λΌμ $q_1(x) - q_2(x) \ne 0$μ΄ λ μ μμΌλ―λ‘ $q_1(x) = q_2(x)$κ° λλ€.
μ’λ³μ΄ 0μ΄ λμμΌλ―λ‘ μ°λ³ μμ 0μ΄ λμ΄ $r_1(x) = r_2(x)$κ° λλ€.
λ°λΌμ $F[x]$μ λν Division Algorithmμ κ²°κ³Όλ μ μΌνλ€. $\blacksquare$
zero of polynomial
Definition.zero of polynomial; polynomialμ κ·Ό
Let field $F$ be a sub-field of field $E$, and $\alpha \in E$.
For a ring $F[x]$, $f(x) \in F[x]$, and $\phi_\alpha: F[x] \longrightarrow E$ is an evaluation homormophism from Theorem 22.4
if $f(\alpha) = 0$, then $\alpha$ is a zero of $f(x)$.
Factor Theorem
Corollary. Factor Theorem; μΈμ μ 리
For $a \in F$,
$a$ is zero of $f(x) \in F[x]$ $\iff$ $(x - a) \mid f(x)$ in $F[x]$.
λ€λ₯΄κ² νννλ©΄,
$a$ is zero of $f(x) \in F[x]$ $\iff$ $f(x) = (x-a)g(x)$ for some $g(x) \in F[x]$.
그리κ³
For $f(x) \in F[x]$,
$f(a) = 0$ $\iff$ $(x - a) \mid f(x)$ in $F[x]$.
proof.
($\impliedby$) Supp. $(x-a) \mid f(x)$ in $F[x]$.
$\implies$ $f(x) = (x-a)g(x)$ for some $g(x) \in F[x]$
$\implies$ evaluation $x$ at $a$, then $f(a) = (a-a) \cdot g(a) = 0 \cdot (a) = 0$
μ¦, $a$ is zero of $f(x)$. $\blacksquare$
($\implies$) Supp. $f(a) = 0$.
$f(x)$λ₯Ό $(x-a)$λ‘ λλμ. κ·Έλ¬λ©΄, μμμ λ³΄μΈ Ring Division Algorithmμ μν΄
$\implies$ $f(x) = q(x)(x-a) + r(x)$ where $q(x), r(x) \in F[x]$
μ΄λ, $(x-a)$μ μ°¨μκ° 1μ΄λ―λ‘ $\deg (r(x)) < 1$μ΄ λλ€.
λ°λΌμ $r(x) = r$λ‘ μμκ° λλ€.
$f(x) = q(x)(x-a) + r$
μ΄μ evaluation $x$ at $a$λ₯Ό μ μ©νλ©΄, μ²μμ κ°μ $f(a) = 0$μ μν΄
$f(a) = q(a) (a-a) + r = 0 + r = 0$μ΄ λλ€.
μ¦, $f(x) = q(x) (x- a)$κ° λλ―λ‘
$(x-a) \mid f(x)$κ° λλ€. $\blacksquare$
Corollary 23.5
Corollary 23.5
A non-zero poly-. $f(x) \in F[x]$ of $\deg = n$ has at most $n$ zeros in field $F$.
proof.
(Induction on $\deg f(x)$)
Let $a_1$, β¦, $a_k$ be zeros of $f(x)$
$f(a_1) = 0$ $\implies$ $f(x) = (x-a_1) q_1(x)$
κ·Έλ¦¬κ³ $\deg g_1 = \deg f - 1 = n-1$μ΄ λλ€.
μ΄ κ³Όμ μ λ°λ³΅νλ©΄, λμ΄μ ν΄λ₯Ό κ°μ§ μλ μ§μ $q_r(x)$μ λλ¬ν κ²μ΄λ€.
\[f(x) = (x-a_1) \cdots (x-a_r) q_r(x)\]$f(x)$μ μ°¨μκ° $n$μ΄λ―λ‘ μ°λ³μλ λ§μμΌ $n$κ°μ $(x-a_i)$κ° λ±μ₯ν κ²μ΄λ―λ‘ $r \le n$μ μ»λλ€.
λ°λΌμ (# of zeros of $f(x)$)λ λ§μμΌ $n$κ°λ€. $\blacksquare$
Corollary 23.6
Corollary 23.6
$(F^{*}, \cdot\;)$λ Field $F$μ λν κ³±μ κ΅°μ΄λ€.
μ΄λ, $(F^{*}, \cdot\;)$μ λͺ¨λ finite subgroupμ λͺ¨λ cyclic groupμ΄λ€.
λ§μ½ Field $F$κ° finite fieldλΌλ©΄, $(F^{*}, \cdot\;)$λ Cyclicμ΄λ€!
proof.
Let $G \le (F^{*}, \cdot\;)$.
If $G$ is cyclic, then $G$ is finite abelian.
λ°λΌμ F.T. of f.g. abelianμ μν΄ $G$λ₯Ό μ λΉν finite cyclic groupμ direct productλ‘ ννν μ μλ€.
\[G \cong \mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} \times \cdots \mathbb{Z}_{d_r}\](μ΄λ, $d_i$λ μμλ€μ κ³±μ΄λ€.)
cyclic group $\mathbb{Z}_{n_i}$ κ°κ°μ κ³±μ κ΅°μΌλ‘μ μκ°νμ.
$m = \gcd(d_i)_{i \in \Lambda}$λ‘ μ μνλ©΄,
$m \le d_1 d_2 \cdots d_r$μ΄ λλ€.
$a_i \in \mathbb{Z}_{d_i}$μ λν΄,
$(a_{n_i})^{d_i} = 1$κ° μ±λ¦½νλ€.
$d_i \mid m$μ΄λ―λ‘ $(a_{n_i})^m = 1$κ° μ±λ¦½νλ€.
μ΄κ²μ $G$λ₯Ό \(\mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} \times \cdots \mathbb{Z}_{d_r}\) μλμμ ν΄μν κ²μ΄λ€. μ΄κ²μ λ€μ $G$μμ ν΄μνλ©΄ μλμ κ°λ€.
For $\alpha \in G$, $\alpha^m = 1$
λ°λΌμ λͺ¨λ $G$μ μμκ° $x^{m} - 1$μ ν΄κ° λλ€.
μ°λ¦¬λ $x^m - 1$μ λν΄ $\lvert G \rvert$ λ§νΌμ ν΄κ° μμμ μκ³ μλ€. κ·Έλ¦¬κ³ $\lvert G \rvert = d_1 d_2 \cdots d_r$μ΄λ€. (μλνλ©΄, \(G \cong \mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} \times \cdots \mathbb{Z}_{d_r}\)μ΄κΈ° λλ¬Έμ΄λ€.)
μ΄λ, $x^m - 1$μ μ°¨μ $m$μ μμμ λ³΄μΈ Corollary 23.5μ μν΄ $m \ge \lvert G \rvert = d_1 d_2 \cdots d_r$μ΄λ€.
- $m \le d_1 d_2 \cdots d_r$ (by $\gcd$)
- $m \ge d_1 d_2 \cdots d_r$ (by Lemma 23.5)
κ° μ±λ¦½νλ―λ‘ $m = d_1 d_2 \cdots d_r$μ΄λ€.
μ΄κ²μ΄ μ±λ¦½νλ€λ κ²μ $d_i$λ€μ΄ λͺ¨λ μλ‘μ λΌλ λ§μ΄λ€.
λ°λΌμ
\[\mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} \times \cdots \mathbb{Z}_{d_r} \cong \mathbb{Z}_m \cong G\]κ° λλ―λ‘ $G$λ cyclic groupμ΄λ€. $\blacksquare$
Examples.
For $(\mathbb{R}^{*}, \cdot \;)$,
\[\begin{aligned} \{-1, +1 \} \cong \mathbb{Z}_2 \le (R^{*}, \cdot\;) \end{aligned}\]For $(\mathbb{C}^{*}, \cdot \;)$,
\[\begin{aligned} \{\pm 1, \pm i \} \cong \mathbb{Z}_4 \le (R^{*}, \cdot\;) \end{aligned}\]μ΄κ²μ
β$\mathbb{Z}_4$ can be embedded into $(\mathbb{C}^{*}, \cdot \;)$.β
\[\mathbb{Z}_4 \hookrightarrow (\mathbb{C}^{*}, \cdot \;)\]λΌκ³ νλ€.
(Generalization)
For $(\mathbb{C}^{*}, \cdot \;)$,
\[\begin{aligned} \mathbb{Z}_n \hookrightarrow (\mathbb{C}^{*}, \cdot \;) \end{aligned}\]μμ 보μ¬λΌ.