Prime & Irreducible element
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Definition. prime element
Let $R$ be a commutative ring, and $p \in R$.
if
- $p$ is not a zero, and not a unit
- for $a, b \in R$, $p \mid ab$ implies $p \mid a$ or $p \mid b$
then, $p$ is a βprime elementβ.
Definition. irreducible element
Let $D$ be an integral domain, and $a \in D$.
if $a$ is not a product of two non-units,
then $a$ is a βirreducible elementβ.
μλλ Irreducible Polynomialμ μ κ°ν΄ Irreducibilityλ₯Ό μκ°νλλ°, κ·Έλ κ² Irreducibilityλ₯Ό μκ°νλ κ²λ³΄λ¨ Ring Theoryμμ μ μνλ Irreducibility μ체λ₯Ό λ°μλ€μ΄λκ² μ’μ λ―!!
An element $a$ is irreducible
$\iff$ possible decompositions of $a$ into the product of two factors are of the form
\[a = u^{-1} \cdot (ua)\]μ¦, μ΄κ²μ λ€μ λ§νλ©΄,
βIf $a = pq$, then $p$ or $q$ is an unit.β
μλνλ©΄, λ§μ½ $p$κ° unit elementλΌλ©΄,
\[\begin{aligned} a &= pq\\ p^{-1}a &= p^{-1}(pq) \\ p^{-1}a &= q \\ \end{aligned}\]λ°λΌμ $a = pq = p(p^{-1}a) = 1 \cdot a$κ° λλ€!!
Theorem: Prime - Irreducible
$D$: Integral Domain
Prime element in $D$ $\implies$ Irreducible in $D$
μΌλ°μ μΌλ‘ μλ°©ν₯μ μ±λ¦½νμ§ μλλ€!!
proof.
($\implies$)
Since $p$ is a Prime element,
If $p \mid ab$ for some $a, b \in D$
then, $p \mid a$ or $p \mid b$.
Supp. $p = ab$, (Check) $a$ or $b$ is an unit.
Sine $p$ is a Prime element,
$p \mid ab$ $\implies$ $p \mid a$ or $p \mid b$
Say $p \mid a$, then $a = p \cdot aβ$.
Then,
\[\begin{aligned} p &= ab = (p \cdot a') b \\ 1 &= a' b \end{aligned}\]λ°λΌμ $b$λ $aβ$λ₯Ό multiplicative inverseλ‘ κ°λ unitμ΄λ€.
λ°λλ‘ $p \mid b$λΌλ©΄, $a$κ° unitμ΄λ€.
λ°λΌμ $p$λ irreducibleμ΄λ€. $\blacksquare$
($\impliedby$μ λ°λ‘)
Integer Domain(λλ Qudratic Integr Ring)κ³Ό Algebraic Normμ λν κ°λ μ μμμΌ λ°λ‘λ₯Ό μ½κ² μ°Ύμ μ μλ€.
Moreover, while an ideal generated by a prime element is a prime ideal,
it is not true in general that an ideal generated by an irreducible element is an irreducible ideal.