2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

3 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


Definition. prime element

Let $R$ be a commutative ring, and $p \in R$.

if

  • $p$ is not a zero, and not a unit
  • for $a, b \in R$, $p \mid ab$ implies $p \mid a$ or $p \mid b$

then, $p$ is a β€œprime element”.


Definition. irreducible element

Let $D$ be an integral domain, and $a \in D$.

if $a$ is not a product of two non-units,

then $a$ is a β€œirreducible element”.

μ›λž˜λŠ” Irreducible Polynomial에 μž…κ°ν•΄ Irreducibilityλ₯Ό μƒκ°ν–ˆλŠ”λ°, κ·Έλ ‡κ²Œ Irreducibilityλ₯Ό μƒκ°ν•˜λŠ” 것보단 Ring Theoryμ—μ„œ μ •μ˜ν•˜λŠ” Irreducibility 자체λ₯Ό λ°›μ•„λ“€μ΄λŠ”κ²Œ 쒋을 λ“―!!

An element $a$ is irreducible

$\iff$ possible decompositions of $a$ into the product of two factors are of the form

\[a = u^{-1} \cdot (ua)\]

즉, 이것을 λ‹€μ‹œ λ§ν•˜λ©΄,

β€œIf $a = pq$, then $p$ or $q$ is an unit.”

μ™œλƒν•˜λ©΄, λ§Œμ•½ $p$κ°€ unit element라면,

\[\begin{aligned} a &= pq\\ p^{-1}a &= p^{-1}(pq) \\ p^{-1}a &= q \\ \end{aligned}\]

λ”°λΌμ„œ $a = pq = p(p^{-1}a) = 1 \cdot a$κ°€ λœλ‹€!!



Theorem: Prime - Irreducible

$D$: Integral Domain

Prime element in $D$ $\implies$ Irreducible in $D$

일반적으둜 μ—­λ°©ν–₯은 μ„±λ¦½ν•˜μ§€ μ•ŠλŠ”λ‹€!!

proof.

($\implies$)

Since $p$ is a Prime element,

If $p \mid ab$ for some $a, b \in D$

then, $p \mid a$ or $p \mid b$.

Supp. $p = ab$, (Check) $a$ or $b$ is an unit.

Sine $p$ is a Prime element,

$p \mid ab$ $\implies$ $p \mid a$ or $p \mid b$

Say $p \mid a$, then $a = p \cdot a’$.

Then,

\[\begin{aligned} p &= ab = (p \cdot a') b \\ 1 &= a' b \end{aligned}\]

λ”°λΌμ„œ $b$λŠ” $a’$λ₯Ό multiplicative inverse둜 κ°–λŠ” unit이닀.

λ°˜λŒ€λ‘œ $p \mid b$라면, $a$κ°€ unit이닀.

λ”°λΌμ„œ $p$λŠ” irreducible이닀. $\blacksquare$

($\impliedby$의 λ°˜λ‘€)

Integer Domain(λ˜λŠ” Qudratic Integr Ring)κ³Ό Algebraic Norm에 λŒ€ν•œ κ°œλ…μ„ μ•Œμ•„μ•Ό λ°˜λ‘€λ₯Ό μ‰½κ²Œ 찾을 수 μžˆλ‹€.



Moreover, while an ideal generated by a prime element is a prime ideal,

it is not true in general that an ideal generated by an irreducible element is an irreducible ideal.