Maximal Ideal & Prime Ideal
2020-2ํ๊ธฐ, ๋ํ์์ โํ๋๋์1โ ์์ ์ ๋ฃ๊ณ ๊ณต๋ถํ ๋ฐ๋ฅผ ์ ๋ฆฌํ ๊ธ์ ๋๋ค. ์ง์ ์ ์ธ์ ๋ ํ์์ ๋๋ค :)
Theorem. Ideal + unity = Ring
Let $R$ be a ring with unity.
If
- $I \trianglelefteq R$
- $1 \in I$
then $I = R$.
proof.
Let $r \in R$, and $1 \in I$
by definition of Ideal $I$, $rI \subseteq I$
$r \cdot 1 \in I \implies r \in I \implies R \subseteq I \implies R = I$
$\blacksquare$
Corollary.
Field $F$ contains no proper non-trivial ideals.
์ฆ, Field๊ฐ ๊ฐ์ง๋ Ideal์ $\{ 0 \}$, $F$ ๋ ๋ฟ์ด๋ค๋ผ๋ ๋ง์ด๋ค!
proof.
Let Ideal $I \triangleleft F$ be a proper ideal.
Supp. $I \ne \{ 0 \}$ to be non-trivial ideal.
For $i \in I$, there exist it inverse $i^{-1}$ in $F$. (Ring๊ณผ ๋ฌ๋ฆฌ inverse element๊ฐ ์กด์ฌํ๋ค.)
since $I$ is ideal, $i^{-1}I \subseteq I$.
๋ฐ๋ผ์ $i^{-1} i = 1 \in I$
Ideal $I$์ ๋ํด $1 \in I$๋ผ๋ฉด, ์์์ ์ฆ๋ช ํ ์ ๋ฆฌ์ ์ํด $I = F$๊ฐ ๋๋ค.
์ด๊ฒ์ $I$๊ฐ proper ideal์ด๋ผ๋ ์ฒ์ ๊ฐ์ ์ ๋ชจ์์ด๋ค!
๋ฐ๋ผ์ $F$์๋ proper ideal์ด ์กด์ฌํ์ง ์๋๋ค. $\blacksquare$
Maximal Ideal
Definition.
$M$: maximal ideal of ring $R$
if
- $M \ne R$
- $M < N \triangleleft R$ implies $N = R$ ($M$๋ณด๋ค ํฐ ideal์ unit ideal์ธ $R$ ๋ฟ์ด๋ค.)
Example.
$p$: prime
Show $p\mathbb{Z} \triangleleft \mathbb{Z}$
์ฆ, $p\mathbb{Z}$๋ Maximal Ideal์ด๋ค.
proof.
$\mathbb{Z} / p\mathbb{Z} \cong \mathbb{Z}_p$
์ด๋, $p\mathbb{Z}$๋ simple group์ด๋ค.
์๋์ ๊ฐ์ ์ ๋ฆฌ์ ๋ฐ๋ฅด๋ฉด $p\mathbb{Z}$๋ maximal normal subgroup์ด ๋๋ค.
$M$ is a maximal normal subgroup of $G$ $\iff$ $G/M$ is simple.
$\mathbb{Z}$๊ฐ abelian์ด๋ฏ๋ก ๋ชจ๋ subgroup์ normal subgroup์ด๋ค.
์์ ๋ ผ์์์ $p\mathbb{Z}$๊ฐ maximal normal subgroup์์ ํ์ธํ๋ค.
์ด๋, $p\mathbb{Z}$๋ $Z$์ ideal์ด๊ธฐ๋ ํ๊ธฐ ๋๋ฌธ์, $p\mathbb{Z}$๋ maximal ideal์ด๋ค. $\blacksquare$
Maximal Ideal generates Field
Theorem.
$R$ : commutative ring + unity
$M \triangleleft R$ : maximal ideal
$\iff$ $R / M$ is a Field.
proof.
($\implies$)
($\implies$) Supp. $M$ is a Maximal Ideal.
(Goal) $R/M$ is a Field.
Since $M$ is an Ideal, $R/M$ is a Ring.
Also, $R$ is commutative, $R/M$ is a Commutative Ring.
(Check) inverse exist?
For $r \notin M$, $\overline{r} \ne \overline{0}$, and $\overline{r} \in R/M$.
Let $\overline{r} \cdot \overline{s} = \overline{1}$
\[\begin{aligned} \overline{r} \overline{s} &= \overline{1} \\ \overline{rs} &= \overline{1} \\ \overline{rs} - \overline{1} &= \overline{0} \\ \overline{rs - 1} &= \overline{0} \end{aligned}\] \[\begin{aligned} rs - 1 &\in M \\ -1 &\in M - rs \\ 1 &\in (-M) + rs \\ 1 &\in M + rs \\ 1 &\in M + (r) \end{aligned}\]$rs$๋ฅผ $(r)$๋ก ๋ฐ๊พธ์๋ค. $(r)=rR$๋ก $r$๋ก ์์ฑ๋ Principal Ideal์ด๋ค.
Claim. $M + (r)$์ Ideal์ด๋ค.
$r(M + (r)) = rM + r(r) = M + (r)$
$(M+(r))r = Mr + (r)r = M + (r)$
$M$๊ณผ ์๋กญ๊ฒ ์ ์ํ $M + (r)$์ ๋น๊ตํด๋ณด์.
$M + (r)$์ $M$์ ์์ ํ ํฌํจํ๋ ideal์ด๊ณ , $r \notin M$์ด๋ฏ๋ก ์๋์ ์์ด ์ฑ๋ฆฝํ๋ค.
\[M < M + (r) \trianglelefteq R\]์ด๋ $M + (r)$์ด ideal์ด๋ฉด์ $1$๋ฅผ ํฌํจํ๋ฏ๋ก $M + (r) = R$์ด๋ค.
์ฆ, $\overline{r}$์ inverse์ธ $\overline{s}$๋ฅผ ๊ฐ์ ํ๊ณ ์ ๋ํ ๊ฒฐ๊ณผ๊ฐ maximal ideal $M$์ ์ ์์ ๋ถํฉํ๋ค.
๋ฐ๋ผ์ $(\overline{r})^{-1} = \overline{s} \in R / M$์ด๋ฏ๋ก
$R / M$์ Field์ด๋ค. $\blacksquare$
p.s. ๊ต์๋์ด ์์ ๋ ํ์ ์ฆ๋ช ์ธ๋ฐ ๋ญ๊ฐ ์ด์ํ๊ฒ ๋ง์์ ์ ๋ ๋ค ;;
($\impliedby$)
Supp. $R/M$ : Field
Let $M < N \trianglelefteq R$.
Then, For $r \in N \setminus M$, $\overline{r} \ne M$ and $\overline{r} \in R/M$.
์ด๋, $R/M$์ด Field์ด๋ฏ๋ก, $\overline{r} \cdot \overline{s} = \overline{1}$์ธ $\overline{s} \in R/M$๊ฐ ์กด์ฌํ๋ค. ($s \in R$)
Claim. coset $M + (r) = M + rR$ is an Ideal.
(์์์ ํ์ธํ๋ ๋ฐฉ์๋๋ก Ideal์์ ํ์ธํ๋ฉด ๋๋ค.)
๋ฐ๋ผ์ $M + (r)$์ Ideal์ด๋ค.
$s \in R$์ด๋ฏ๋ก $1 \in M + (r)$์ด ๋๋ค.
$M$ is a Maximal Ideal $\implies$ $0 \in M$.
$0 + r \cdot s = 1$ for some $s \in R$.
Ideal์ด $1$์ ํฌํจํ๊ณ ์์ผ๋ฏ๋ก $M + (r) = R$์ด ๋๋ค.
์ด๋, $M < N$์ด๊ณ , $r \in N \setminus M$์ด๋ฏ๋ก
$M + (r) \subseteq N$์ด๋ค.
๊ทธ๋ฐ๋ฐ, $M + (r) = R$์ด๋ฏ๋ก $R \subseteq N$์ด๋ค.
๋ฐ๋ผ์ $N = R$์ด๋ค.
์ฆ, $M < N \trianglelefteq R$์ ๋ํด $N = R$์ด ๋๋ฏ๋ก
$M$ is a Maximal Ideal. $\blacksquare$
Corollary.
$R$: commutative ring + unity
$R$ is a Field
$\iff$ $R$ has no proper non-trivial ideal.
์์์ ์ดํด๋ดค๋ Corollary์์ ์ผ์ชฝ ๋ฐฉํฅ์ ๋ํ ๋ช ์ ๊ฐ ์ถ๊ฐ๋ ๋ฐ๋ฆ ์ ๋ฆฌ๋ค!!
($\impliedby$)
Supp. the only ideals in $R$ is $\{ 0 \}$ and $R$.
(Goal) $R$ is a Field $\equiv$ inverse ๆ
Consider an ideal $rR$
then $\{ 0 \} < rR \trianglelefteq R$
$R$์๋ ideal์ด $R$ ํ๋ ๋ฟ์ด๋ผ๊ณ ๊ฐ์ ํ์ผ๋ฏ๋ก $rR = R$.
์ด๋, $1 \in R$์ด๋ฏ๋ก $1 \in rR$.
์ด๊ฒ์ $1 = r \cdot s$ for some $s \in R$์์ ๋งํ๋ค.
๋ฐ๋ผ์ $r \in R$์ ๋ํ inverse๊ฐ ์กด์ฌํ๋ฏ๋ก $R$์ Field์ด๋ค. $\blacksquare$
Prime Ideal
Definition. Prime Ideal
Let $R$ be a commutative ring, and $N \trianglelefteq R$.
When $N$ is a โprime idealโ, then
for $a, b \in R$, $ab \in N$ implies $a \in N$ or $b \in N$.
(ํ์คํ์ง ์์.)
$N \trianglelefteq R$์ด prime ideal์ด๋ผ๋ฉด, $a \in N$์ prime elt over $R$์ด๋ค?
Prime Ideal generates Integral Domain
Theorem.
$R$ : commutative ring + unity.
$N \triangleleft R$ : Prime Ideal
$\iff$ $R/N$ is an integral domain.
proof.
($\implies$)
Supp. $N$ is a Prime Ideal, and $\overline{a} \cdot \overline{b} = \overline{0}$ for some $a, b \in R$.
(Goal) $\overline{a} = \overline{0}$ or $\overline{b} = \overline{0}$ in $R/N$.
\[\begin{aligned} &\overline{a} \overline{b} = \overline{ab} = \overline{0} = N \\ &\implies ab \in N \\ &\implies a \in N \quad \textrm{or} \quad b \in N \qquad (N \; \textrm{is a Prime Ideal}) \end{aligned}\]๋ง์ฝ $a \in N$๋ผ๋ฉด, $\overline{a} = \overline{0}$์ด ๋๋ค.
์ด๊ฒ์ด ๊ณง $R/N$์ด Integral Domain์์ ์๋ฏธํ๋ค. $\blacksquare$
($\impliedby$)
Supp. $R/N$ is an Integral Domain.
(Goal) $N$ : Prime Ideal
Let $a, b \in R$ s.t. $ab \in N$.
(Goal) show $a \in N$ or $b \in N$
Since $ab \in N$, $\overline{ab} = \overline{0}$ in $R/N$.
Since $R/N$ is an integral domain, $\overline{a} = 0$ or $\overline{b} = 0$.
๋ฐ๋ผ์ $a \in N$ or $b \in N$.
์ด๊ฒ์ $N$์ด Prime Ideal์์ ์๋ฏธํ๋ค. $\blacksquare$
Maximal Ideal implies Prime Ideal
Theorem.
Any Maximal Ideal of commutative ring is also a Prime Ideal.
proof.
Any Field is an Integral Domain.
($N$ : Maximal Ideal) $\iff$ ($R/N$ : Field)
$\implies$ ($R/N$ : Integral Domain) $\iff$ ($N$ : Prime Ideal)
๋ฐ๋ผ์ Maximal Ideal์ Prime Ideal์ด๋ค. $\blacksquare$