2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

10 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)


Theorem. Ideal + unity = Ring

Let $R$ be a ring with unity.

If

  • $I \trianglelefteq R$
  • $1 \in I$

then $I = R$.

proof.

Let $r \in R$, and $1 \in I$

by definition of Ideal $I$, $rI \subseteq I$

$r \cdot 1 \in I \implies r \in I \implies R \subseteq I \implies R = I$

$\blacksquare$


Corollary.

Field $F$ contains no proper non-trivial ideals.

์ฆ‰, Field๊ฐ€ ๊ฐ€์ง€๋Š” Ideal์€ $\{ 0 \}$, $F$ ๋‘˜ ๋ฟ์ด๋‹ค๋ผ๋Š” ๋ง์ด๋‹ค!

proof.

Let Ideal $I \triangleleft F$ be a proper ideal.

Supp. $I \ne \{ 0 \}$ to be non-trivial ideal.

For $i \in I$, there exist it inverse $i^{-1}$ in $F$. (Ring๊ณผ ๋‹ฌ๋ฆฌ inverse element๊ฐ€ ์กด์žฌํ•œ๋‹ค.)

since $I$ is ideal, $i^{-1}I \subseteq I$.

๋”ฐ๋ผ์„œ $i^{-1} i = 1 \in I$

Ideal $I$์— ๋Œ€ํ•ด $1 \in I$๋ผ๋ฉด, ์œ„์—์„œ ์ฆ๋ช…ํ•œ ์ •๋ฆฌ์— ์˜ํ•ด $I = F$๊ฐ€ ๋œ๋‹ค.

์ด๊ฒƒ์€ $I$๊ฐ€ proper ideal์ด๋ผ๋Š” ์ฒ˜์Œ ๊ฐ€์ •์— ๋ชจ์ˆœ์ด๋‹ค!

๋”ฐ๋ผ์„œ $F$์—๋Š” proper ideal์ด ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค. $\blacksquare$



Maximal Ideal

Definition.

$M$: maximal ideal of ring $R$

if

  • $M \ne R$
  • $M < N \triangleleft R$ implies $N = R$ ($M$๋ณด๋‹ค ํฐ ideal์€ unit ideal์ธ $R$ ๋ฟ์ด๋‹ค.)


Example.

$p$: prime

Show $p\mathbb{Z} \triangleleft \mathbb{Z}$

์ฆ‰, $p\mathbb{Z}$๋Š” Maximal Ideal์ด๋‹ค.


proof.

$\mathbb{Z} / p\mathbb{Z} \cong \mathbb{Z}_p$

์ด๋•Œ, $p\mathbb{Z}$๋Š” simple group์ด๋‹ค.

์•„๋ž˜์™€ ๊ฐ™์€ ์ •๋ฆฌ์— ๋”ฐ๋ฅด๋ฉด $p\mathbb{Z}$๋Š” maximal normal subgroup์ด ๋œ๋‹ค.

$M$ is a maximal normal subgroup of $G$ $\iff$ $G/M$ is simple.

$\mathbb{Z}$๊ฐ€ abelian์ด๋ฏ€๋กœ ๋ชจ๋“  subgroup์€ normal subgroup์ด๋‹ค.

์•ž์˜ ๋…ผ์˜์—์„œ $p\mathbb{Z}$๊ฐ€ maximal normal subgroup์ž„์„ ํ™•์ธํ–ˆ๋‹ค.

์ด๋•Œ, $p\mathbb{Z}$๋Š” $Z$์˜ ideal์ด๊ธฐ๋„ ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, $p\mathbb{Z}$๋Š” maximal ideal์ด๋‹ค. $\blacksquare$


Maximal Ideal generates Field

Theorem.

$R$ : commutative ring + unity

$M \triangleleft R$ : maximal ideal

$\iff$ $R / M$ is a Field.

proof.

($\implies$)

($\implies$) Supp. $M$ is a Maximal Ideal.

(Goal) $R/M$ is a Field.

Since $M$ is an Ideal, $R/M$ is a Ring.

Also, $R$ is commutative, $R/M$ is a Commutative Ring.

(Check) inverse exist?

For $r \notin M$, $\overline{r} \ne \overline{0}$, and $\overline{r} \in R/M$.

Let $\overline{r} \cdot \overline{s} = \overline{1}$

\[\begin{aligned} \overline{r} \overline{s} &= \overline{1} \\ \overline{rs} &= \overline{1} \\ \overline{rs} - \overline{1} &= \overline{0} \\ \overline{rs - 1} &= \overline{0} \end{aligned}\] \[\begin{aligned} rs - 1 &\in M \\ -1 &\in M - rs \\ 1 &\in (-M) + rs \\ 1 &\in M + rs \\ 1 &\in M + (r) \end{aligned}\]

$rs$๋ฅผ $(r)$๋กœ ๋ฐ”๊พธ์—ˆ๋‹ค. $(r)=rR$๋กœ $r$๋กœ ์ƒ์„ฑ๋œ Principal Ideal์ด๋‹ค.

Claim. $M + (r)$์€ Ideal์ด๋‹ค.

$r(M + (r)) = rM + r(r) = M + (r)$

$(M+(r))r = Mr + (r)r = M + (r)$

$M$๊ณผ ์ƒˆ๋กญ๊ฒŒ ์ •์˜ํ•œ $M + (r)$์„ ๋น„๊ตํ•ด๋ณด์ž.

$M + (r)$์€ $M$์„ ์™„์ „ํžˆ ํฌํ•จํ•˜๋Š” ideal์ด๊ณ , $r \notin M$์ด๋ฏ€๋กœ ์•„๋ž˜์˜ ์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

\[M < M + (r) \trianglelefteq R\]

์ด๋•Œ $M + (r)$์ด ideal์ด๋ฉด์„œ $1$๋ฅผ ํฌํ•จํ•˜๋ฏ€๋กœ $M + (r) = R$์ด๋‹ค.

์ฆ‰, $\overline{r}$์˜ inverse์ธ $\overline{s}$๋ฅผ ๊ฐ€์ •ํ•˜๊ณ  ์œ ๋„ํ•œ ๊ฒฐ๊ณผ๊ฐ€ maximal ideal $M$์˜ ์ •์˜์— ๋ถ€ํ•ฉํ•œ๋‹ค.

๋”ฐ๋ผ์„œ $(\overline{r})^{-1} = \overline{s} \in R / M$์ด๋ฏ€๋กœ

$R / M$์€ Field์ด๋‹ค. $\blacksquare$

p.s. ๊ต์ˆ˜๋‹˜์ด ์ˆ˜์—… ๋•Œ ํ•˜์‹  ์ฆ๋ช…์ธ๋ฐ ๋ญ”๊ฐ€ ์ด์ƒํ•˜๊ฒŒ ๋งˆ์Œ์— ์•ˆ ๋“ ๋‹ค ;;

($\impliedby$)

Supp. $R/M$ : Field

Let $M < N \trianglelefteq R$.

Then, For $r \in N \setminus M$, $\overline{r} \ne M$ and $\overline{r} \in R/M$.

์ด๋•Œ, $R/M$์ด Field์ด๋ฏ€๋กœ, $\overline{r} \cdot \overline{s} = \overline{1}$์ธ $\overline{s} \in R/M$๊ฐ€ ์กด์žฌํ•œ๋‹ค. ($s \in R$)

Claim. coset $M + (r) = M + rR$ is an Ideal.

(์•ž์—์„œ ํ™•์ธํ–ˆ๋˜ ๋ฐฉ์‹๋Œ€๋กœ Ideal์ž„์„ ํ™•์ธํ•˜๋ฉด ๋œ๋‹ค.)

๋”ฐ๋ผ์„œ $M + (r)$์€ Ideal์ด๋‹ค.


$s \in R$์ด๋ฏ€๋กœ $1 \in M + (r)$์ด ๋œ๋‹ค.

$M$ is a Maximal Ideal $\implies$ $0 \in M$.

$0 + r \cdot s = 1$ for some $s \in R$.

Ideal์ด $1$์„ ํฌํ•จํ•˜๊ณ  ์žˆ์œผ๋ฏ€๋กœ $M + (r) = R$์ด ๋œ๋‹ค.

์ด๋•Œ, $M < N$์ด๊ณ , $r \in N \setminus M$์ด๋ฏ€๋กœ

$M + (r) \subseteq N$์ด๋‹ค.

๊ทธ๋Ÿฐ๋ฐ, $M + (r) = R$์ด๋ฏ€๋กœ $R \subseteq N$์ด๋‹ค.

๋”ฐ๋ผ์„œ $N = R$์ด๋‹ค.


์ฆ‰, $M < N \trianglelefteq R$์— ๋Œ€ํ•ด $N = R$์ด ๋˜๋ฏ€๋กœ

$M$ is a Maximal Ideal. $\blacksquare$


Corollary.

$R$: commutative ring + unity

$R$ is a Field

$\iff$ $R$ has no proper non-trivial ideal.

์•ž์—์„œ ์‚ดํŽด๋ดค๋˜ Corollary์—์„œ ์™ผ์ชฝ ๋ฐฉํ–ฅ์— ๋Œ€ํ•œ ๋ช…์ œ๊ฐ€ ์ถ”๊ฐ€๋œ ๋”ฐ๋ฆ„ ์ •๋ฆฌ๋‹ค!!

($\impliedby$)

Supp. the only ideals in $R$ is $\{ 0 \}$ and $R$.

(Goal) $R$ is a Field $\equiv$ inverse ๆœ‰

Consider an ideal $rR$

then $\{ 0 \} < rR \trianglelefteq R$

$R$์—๋Š” ideal์ด $R$ ํ•˜๋‚˜ ๋ฟ์ด๋ผ๊ณ  ๊ฐ€์ •ํ–ˆ์œผ๋ฏ€๋กœ $rR = R$.

์ด๋•Œ, $1 \in R$์ด๋ฏ€๋กœ $1 \in rR$.

์ด๊ฒƒ์€ $1 = r \cdot s$ for some $s \in R$์ž„์„ ๋งํ•œ๋‹ค.

๋”ฐ๋ผ์„œ $r \in R$์— ๋Œ€ํ•œ inverse๊ฐ€ ์กด์žฌํ•˜๋ฏ€๋กœ $R$์€ Field์ด๋‹ค. $\blacksquare$



Prime Ideal

Definition. Prime Ideal

Let $R$ be a commutative ring, and $N \trianglelefteq R$.

When $N$ is a โ€œprime idealโ€, then

for $a, b \in R$, $ab \in N$ implies $a \in N$ or $b \in N$.

(ํ™•์‹คํ•˜์ง„ ์•Š์Œ.)

$N \trianglelefteq R$์ด prime ideal์ด๋ผ๋ฉด, $a \in N$์€ prime elt over $R$์ด๋‹ค?



Prime Ideal generates Integral Domain

Theorem.

$R$ : commutative ring + unity.

$N \triangleleft R$ : Prime Ideal

$\iff$ $R/N$ is an integral domain.

proof.

($\implies$)

Supp. $N$ is a Prime Ideal, and $\overline{a} \cdot \overline{b} = \overline{0}$ for some $a, b \in R$.

(Goal) $\overline{a} = \overline{0}$ or $\overline{b} = \overline{0}$ in $R/N$.

\[\begin{aligned} &\overline{a} \overline{b} = \overline{ab} = \overline{0} = N \\ &\implies ab \in N \\ &\implies a \in N \quad \textrm{or} \quad b \in N \qquad (N \; \textrm{is a Prime Ideal}) \end{aligned}\]

๋งŒ์•ฝ $a \in N$๋ผ๋ฉด, $\overline{a} = \overline{0}$์ด ๋œ๋‹ค.

์ด๊ฒƒ์ด ๊ณง $R/N$์ด Integral Domain์ž„์„ ์˜๋ฏธํ•œ๋‹ค. $\blacksquare$

($\impliedby$)

Supp. $R/N$ is an Integral Domain.

(Goal) $N$ : Prime Ideal

Let $a, b \in R$ s.t. $ab \in N$.

(Goal) show $a \in N$ or $b \in N$

Since $ab \in N$, $\overline{ab} = \overline{0}$ in $R/N$.

Since $R/N$ is an integral domain, $\overline{a} = 0$ or $\overline{b} = 0$.

๋”ฐ๋ผ์„œ $a \in N$ or $b \in N$.

์ด๊ฒƒ์€ $N$์ด Prime Ideal์ž„์„ ์˜๋ฏธํ•œ๋‹ค. $\blacksquare$



Maximal Ideal implies Prime Ideal

Theorem.

Any Maximal Ideal of commutative ring is also a Prime Ideal.

proof.

Any Field is an Integral Domain.

($N$ : Maximal Ideal) $\iff$ ($R/N$ : Field)

$\implies$ ($R/N$ : Integral Domain) $\iff$ ($N$ : Prime Ideal)

๋”ฐ๋ผ์„œ Maximal Ideal์€ Prime Ideal์ด๋‹ค. $\blacksquare$