Principal Ideal & PID
2020-2ํ๊ธฐ, ๋ํ์์ โํ๋๋์1โ ์์ ์ ๋ฃ๊ณ ๊ณต๋ถํ ๋ฐ๋ฅผ ์ ๋ฆฌํ ๊ธ์ ๋๋ค. ์ง์ ์ ์ธ์ ๋ ํ์์ ๋๋ค :)
Definition. Principal Ideal
Let $R$ be a commutative ring with unity, and $a \in R$.
the ideal $\left< a \right> = \{ ra \mid r \in R \}$ is called a โprincipal ideal generated by $a$โ
For an ideal $N \trianglelefteq R$, if $N = \left< a \right>$ for some $a \in R$, then $N$ is a Principal Ideal.
Example.
Every ideal of a ring $\mathbb{Z}$ is of the form $n\mathbb{Z}$.
And $n\mathbb{Z}$ is an ideal $\left< n \right>$ generated by $a$.
๋ฐ๋ผ์ $\mathbb{Z}$์ ๋ชจ๋ ideal์ principal ideal์!
Example.
$F[x]$์ ideal ์ค ํ๋์ธ $\left< x \right>$๋ฅผ ์๊ฐํด๋ณด์.
$\left< x \right>$์ unity $1$์ ํฌํจํ์ง ์๋๋ค. ์ฆ $\left< x \right>$์๋ non-constant function๋ค๋ง์ ๊ฐ์ง๊ณ ์๋ค.
๋ํ, $\left< x \right>$๋ $x \in F[x]$์ ๊ณฑ์ ์ํด ์์ฑ๋๋ ideal์ด๋ฏ๋ก principal ideal์ด๋ค.
Princial Ideal Domain; PID
Definition
An Integral Domain whose every ideal is a Principal Ideal.
Theorem 27.24
If $F$ is a field, every ideal in $F[x]$ is principal. ($F[x]$ is PID)
proof.
Let $N \trianglelefteq F[x]$.
(Case 1)
If $N = \{ 0 \}$, then $N = \left< 0 \right>$.
Supp. $N \ne 0$, and let $g(x) \ne 0 \in N$ with minimal degree in $N$.
(Case 2) $\deg g(x) = 0$
Then, $g(x) \in F$ is a constant function. ๊ทธ๋ฆฌ๊ณ $N$์ด group์ด๋ฏ๋ก $N$์ ์์ํจ์๋ค์ ์งํฉ์ด๋ค. ๋ฐ๋ผ์ $N = \left< 1 \right>$
๋ฐ๋ผ์ Ideal์ธ $N$์ ๋ํด $1 \in N$์ด๋ฏ๋ก ์์์ ๋ณด์ธ ์ ๋ฆฌ์ ์ํด $N = F[x]$์ด๋ค.
($N = F[x]$์ด๋ผ๋๊ฒ ๋ง์ด ๋๋ ๊ทผ๋ฐ??)
ใด Yes! ์ ์๊ฐํด๋ณด๋๊น ๋ง์ด ๋๋ค. ideal $N$์ ์ ์ด์ $F[x]$๋ก ์ก์ผ๋ฉด $N = F[x]$๊ฐ ๋๋ค.
Q. ๊ทธ๋ฐ๋ฐ $\left< 1 \right> = F[x]$์ธ ๊ฑธ๊น?
A. Principal Ideal์ธ $\left< 1 \right>$์ cyclic group์ notation๊ณผ ํท๊ฐ๋ฆฐ ๊ฒ ๊ฐ๋ค.
$\left< 1 \right>$๋
\[\left< 1 \right> = \{ f(x) \cdot 1 \mid f(x) \in F[x] \}\]์ด๋ฏ๋ก $\left< 1 \right> = F[x]$๊ฐ ๋๋ค.
(Case 3) $\deg g(x) \ge 1$
let $\forall \; f(x) \in N$.
then, by โDivision Algorithmโ $f(x) = g(x) q(x) + r(x)$ where $r(x) = 0$ or $\deg r(x) < \deg g(x)$.
$f(x), g(x) \in N$์ด๋ฏ๋ก ideal $N$์ ์ ์์ ๋ฐ๋ผ $f(x) - g(x)q(x) = r(x) \in N$์ด๋ค.
($q(x) \in F[x]$์ ๋ํด $N \cdot q(x) \subseteq N$์ด๋ค. ๋ฐ๋ผ์ $g(x) q(x) \in N$์ด๋ค.)
$g(x)$๋ ์ ์์ $N$์ non-zero minimal degree elt์ด๋ฏ๋ก $r(x) \in N$๋ผ๋ฉด, $r(x) = 0$์ด ๋์ด์ผ ํ๋ค.
๋ฐ๋ผ์ $f(x) = g(x) q(x)$์ด๊ณ , ์ด๊ฒ์ $N = \left< g(x) \right>$๋ฅผ ์๋ฏธํ๋ค.
Theorem
Let $F$ be a Field, and $0 \ne p(x) \in F[x]$.
$\left< p(x) \right>$ is maximal ideal
$\iff$ $p(x)$ is irreducible in $F[x]$.
์ฃผ๋ก ์ผ์ชฝ ๋ฐฉํฅ์ ๋ช ์ ๋ฅผ ๋ ์์ฃผ ์ฌ์ฉํ๋ค!!
proof.
($\implies$)
Supp. $\left< p(x) \right>$ is a Maximal Ideal.
Assume that $p(x)$ is reducible, then
$\implies$ $p(x) = f(x)g(x)$ for some $f(x), g(x) \in F[x]$
$\implies$ $\left< p(x) \right> < \left< f(x) \right> \trianglelefteq F[x]$
Since $\left< p(x) \right>$ is a Maximal Ideal, $\left< f(x) \right> = F[x] = \left< 1 \right>$
Thus, $f(x) = 1$. This is contradict to our assumption of $p(x)$ is reducible.
$\therefore$ $p(x)$ is irreducible. $\blacksquare$
($\impliedby$)
Supp. $p(x)$ is irreducible.
(Goal) $\left< p(x) \right>$ is Maxiaml element.
Let assume there is a bigger ideal $\left< g(x) \right>$.
\[\left< p(x) \right> < \left< g(x) \right> \trianglelefteq F[x]\]Then, $p(x) \in \left< g(x) \right>$.
This means $p(x) = g(x) \cdot h(x)$ for some $h(x) \in F[x]$.
Sine $p(x)$ is irreducible, $g(x)$ or $h(x)$ is an unit.
(Case 1) If $h(x)$ is an unit, then $\left< p(x) \right> = \left< g(x) \right>$.
This contradicts to $\left< p(x) \right> < \left< g(x) \right>$.
(Case 2) Therefore $g(x)$ is a unit, then this means $1 \in \left< g(x) \right>$ and $\left< g(x) \right> = \left< 1 \right> = F[x]$.
This means $\left< p(x) \right>$ is a Maximal Ideal. $\blacksquare$
Example.
$x^2 - 2$ is irreducible in $\mathbb{Q}[x]$.
Therefore, $\left< x^2 - x\right>$ is a Maximal Ideal.
Therefore, $\mathbb{Q}[x] / \left< x^2 - 2 \right>$ is a Field.
\[\mathbb{Q}[x] / \left< x^2 - 2 \right> \cong \mathbb{Q}[\sqrt{2}] = \{ a + b \sqrt{2} \mid a, b \in \mathbb{Q} \}\]proof.
Define an evaluation homomorphism $\phi_{\sqrt{2}}$
\[\begin{aligned} \phi_{\sqrt{2}}: \mathbb{Q}[x] &\longrightarrow \mathbb{Q}[\sqrt{2}]\\ f(x) &\longmapsto f(\sqrt{2}) \end{aligned}\](1) $\phi_{\sqrt{2}}$ is a homomorphism.
์-๋ต
(2) $\phi_{\sqrt{2}}$ is onto
for $a+b\sqrt{2} \in \mathbb{[\sqrt{2}]}$, there exist an inverse image.
for example $a+bx \in \mathbb{Q}[x]$ is one of it.
(Claim) $\ker \phi = \left< x^2 - 2 \right>$.
Since $(\sqrt{2})^2 - 2 = 0$, $\left< x^2 - 2 \right> \subseteq \ker \phi$
For $p(x) \in \ker \phi$, $p(\sqrt{2}) = 0$ and $p(-\sqrt{2}) = 0$.
And also $p(x)$ have rational coefficients, therefore $(x^2 - 2) \mid p(x)$.
This means $p(x) \in \left< x^2 - 2 \right>$.
$\implies$ $\ker \phi \subseteq \left< x^2 - 2 \right>$.
$\therefore \ker \phi = \left< x^2 - 2 \right>$.
By FHT,
\[\begin{aligned} \mathbb{Q}[x] / \ker \phi &\cong \phi[\mathbb{Q}[x]] \\ \mathbb{Q}[x] / \left< x^2 - 2 \right> &\cong \mathbb{Q}[\sqrt{2}] \end{aligned}\]$\blacksquare$
Example.
$x^2 + 1$ is irreducible in $\mathbb{R}[x]$.
$\mathbb{R}[x] / \left< x^2 + 1 \right> \cong \mathbb{C}$ is a Field.
Theorem
Let $p(x) \in F[x]$
$p(x)$ irreducible in $F[x]$
$\iff$ $p(x)$ is a prime element of $F[x]$.
proof.
($\implies$)
Let $p(x)$ be a irreducible in $F[x]$.
By Theorem above, $\left< p(x) \right>$ is a Maximal Ideal.
By Theorem of Maximal Ideal, $\left< p(x) \right>$ is a Prime Ideal.
$\implies$ $p(x)$ is a Prime element.
(๋ณด์ถฉ) Thm 27.24์์ ์ฐ๋ฆฌ๋ Field์์ ์ ๋๋๋ ideal์ ๋ชจ๋ principal์์ ๋ณด์๋ค. ๋ฐ๋ผ์ $F[x]$๋ PID๊ฐ ๋๋ค.
์ด๋, PID์์ ๋ง์กฑํ๋ ์ฑ์ง ์ค ํ๋๋ โPrime Ideals are generated by Prime elementsโ๋ผ๋ ๊ฒ์ด๋ค.1 ์ฆ, $\left< p(x) \right>$๊ฐ Prime Ideal์์ ํ์ธํ๋ค๋ฉด, $\left< p(x) \right>$๋ฅผ ์์ฑํ๋ $p(x)$๋ผ๋ Prime element๊ฐ ์์์ ์ ์ ์๋ค.
๊ทธ๋์ ์ฌ์ค $\implies$ ๋ฐฉํฅ ๋ช ์ ๋ฅผ ์ฆ๋ช ํ๋ ๊ณผ์ ์์ โPrime Ideals are generated by Prime elementsโ ๋ช ์ ๋ฅผ ์ฆ๋ช ํ ํ์๊ฐ ์๋ค.
proof. โEvery Principal Prime Ideal is generated by a Prime elementโ
Let $F$ be a PID, and $I \trianglelefteq F$ be a Prime Ideal.
Since $I \in \textrm{PID} = F$, $I = \left< a \right>$ for some $a \in F$.
Since $I$ is a Prime Ideal,
if $nm \in I$, then $n \in I$ or $m \in I$.
(Check) $a \mid nm$ implies $a \mid n$ or $a \mid m$.
Let $nm \in I$, then $a \mid nm$ ($\because I = \left< a \right>$)
- if $n \in I$, then $a \mid n$.
- if $m \in I$, then $a \mid m$.
Therefore, $a$ is a Prime element, and Every Principal Prime Ideal is generated by a Prime element. $\blacksquare$
($\impliedby$)
In General, a Prime element is Irreducible. Theorem
์์ ๋ช ์ ๊ฐ ์์ฌํ๋ ๋ฐ๋ ๋งค์ฐ ์์ฒญ๋๋ค!!
$p(x)$๊ฐ irreducible์ด๋ผ๊ณ ๊ฐ์ ํ ๊ฒ์ด $p(x)$๊ฐ prime์ด๋ผ๋ ๊ฑธ ์ ๋ํ๊ธฐ ๋๋ฌธ์ด๋ค!!
์ด๊ฒ์ PID์์ irreducibility์ primality๊ฐ ์ผ์นํจ์ ์์ฌํ๋ค!!!
Corollary
In PID, irreducible $\equiv$ prime
์ฆ๋ช ์ ์์ ๋ช ์ ์ $\implies$ ๋ฐฉํฅ์ ์ํด ๋ณด์ฅ๋๋ค.