2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

11 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)


Definition. Principal Ideal

Let $R$ be a commutative ring with unity, and $a \in R$.

the ideal $\left< a \right> = \{ ra \mid r \in R \}$ is called a โ€œprincipal ideal generated by $a$โ€

For an ideal $N \trianglelefteq R$, if $N = \left< a \right>$ for some $a \in R$, then $N$ is a Principal Ideal.


Example.

Every ideal of a ring $\mathbb{Z}$ is of the form $n\mathbb{Z}$.

And $n\mathbb{Z}$ is an ideal $\left< n \right>$ generated by $a$.

๋”ฐ๋ผ์„œ $\mathbb{Z}$์˜ ๋ชจ๋“  ideal์€ principal ideal์ž„!


Example.

$F[x]$์˜ ideal ์ค‘ ํ•˜๋‚˜์ธ $\left< x \right>$๋ฅผ ์ƒ๊ฐํ•ด๋ณด์ž.

$\left< x \right>$์€ unity $1$์„ ํฌํ•จํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ฆ‰ $\left< x \right>$์—๋Š” non-constant function๋“ค๋งŒ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค.

๋˜ํ•œ, $\left< x \right>$๋Š” $x \in F[x]$์˜ ๊ณฑ์— ์˜ํ•ด ์ƒ์„ฑ๋˜๋Š” ideal์ด๋ฏ€๋กœ principal ideal์ด๋‹ค.



Princial Ideal Domain; PID

Definition

An Integral Domain whose every ideal is a Principal Ideal.



Theorem 27.24

If $F$ is a field, every ideal in $F[x]$ is principal. ($F[x]$ is PID)

proof.

Let $N \trianglelefteq F[x]$.

(Case 1)

If $N = \{ 0 \}$, then $N = \left< 0 \right>$.


Supp. $N \ne 0$, and let $g(x) \ne 0 \in N$ with minimal degree in $N$.

(Case 2) $\deg g(x) = 0$

Then, $g(x) \in F$ is a constant function. ๊ทธ๋ฆฌ๊ณ  $N$์ด group์ด๋ฏ€๋กœ $N$์€ ์ƒ์ˆ˜ํ•จ์ˆ˜๋“ค์˜ ์ง‘ํ•ฉ์ด๋‹ค. ๋”ฐ๋ผ์„œ $N = \left< 1 \right>$

๋”ฐ๋ผ์„œ Ideal์ธ $N$์— ๋Œ€ํ•ด $1 \in N$์ด๋ฏ€๋กœ ์•ž์—์„œ ๋ณด์ธ ์ •๋ฆฌ์— ์˜ํ•ด $N = F[x]$์ด๋‹ค.

($N = F[x]$์ด๋ผ๋Š”๊ฒŒ ๋ง์ด ๋˜๋‚˜ ๊ทผ๋ฐ??)

ใ„ด Yes! ์ž˜ ์ƒ๊ฐํ•ด๋ณด๋‹ˆ๊นŒ ๋ง์ด ๋œ๋‹ค. ideal $N$์„ ์• ์ดˆ์— $F[x]$๋กœ ์žก์œผ๋ฉด $N = F[x]$๊ฐ€ ๋œ๋‹ค.

Q. ๊ทธ๋Ÿฐ๋ฐ $\left< 1 \right> = F[x]$์ธ ๊ฑธ๊นŒ?

A. Principal Ideal์ธ $\left< 1 \right>$์„ cyclic group์˜ notation๊ณผ ํ—ท๊ฐˆ๋ฆฐ ๊ฒƒ ๊ฐ™๋‹ค.

$\left< 1 \right>$๋Š”

\[\left< 1 \right> = \{ f(x) \cdot 1 \mid f(x) \in F[x] \}\]

์ด๋ฏ€๋กœ $\left< 1 \right> = F[x]$๊ฐ€ ๋œ๋‹ค.


(Case 3) $\deg g(x) \ge 1$

let $\forall \; f(x) \in N$.

then, by โ€œDivision Algorithmโ€ $f(x) = g(x) q(x) + r(x)$ where $r(x) = 0$ or $\deg r(x) < \deg g(x)$.

$f(x), g(x) \in N$์ด๋ฏ€๋กœ ideal $N$์˜ ์ •์˜์— ๋”ฐ๋ผ $f(x) - g(x)q(x) = r(x) \in N$์ด๋‹ค.
($q(x) \in F[x]$์— ๋Œ€ํ•ด $N \cdot q(x) \subseteq N$์ด๋‹ค. ๋”ฐ๋ผ์„œ $g(x) q(x) \in N$์ด๋‹ค.)

$g(x)$๋Š” ์ •์˜์ƒ $N$์˜ non-zero minimal degree elt์ด๋ฏ€๋กœ $r(x) \in N$๋ผ๋ฉด, $r(x) = 0$์ด ๋˜์–ด์•ผ ํ•œ๋‹ค.

๋”ฐ๋ผ์„œ $f(x) = g(x) q(x)$์ด๊ณ , ์ด๊ฒƒ์€ $N = \left< g(x) \right>$๋ฅผ ์˜๋ฏธํ•œ๋‹ค.



Theorem

Let $F$ be a Field, and $0 \ne p(x) \in F[x]$.

$\left< p(x) \right>$ is maximal ideal

$\iff$ $p(x)$ is irreducible in $F[x]$.

์ฃผ๋กœ ์™ผ์ชฝ ๋ฐฉํ–ฅ์˜ ๋ช…์ œ๋ฅผ ๋” ์ž์ฃผ ์‚ฌ์šฉํ•œ๋‹ค!!

proof.

($\implies$)

Supp. $\left< p(x) \right>$ is a Maximal Ideal.

Assume that $p(x)$ is reducible, then

$\implies$ $p(x) = f(x)g(x)$ for some $f(x), g(x) \in F[x]$

$\implies$ $\left< p(x) \right> < \left< f(x) \right> \trianglelefteq F[x]$

Since $\left< p(x) \right>$ is a Maximal Ideal, $\left< f(x) \right> = F[x] = \left< 1 \right>$

Thus, $f(x) = 1$. This is contradict to our assumption of $p(x)$ is reducible.

$\therefore$ $p(x)$ is irreducible. $\blacksquare$

($\impliedby$)

Supp. $p(x)$ is irreducible.

(Goal) $\left< p(x) \right>$ is Maxiaml element.

Let assume there is a bigger ideal $\left< g(x) \right>$.

\[\left< p(x) \right> < \left< g(x) \right> \trianglelefteq F[x]\]

Then, $p(x) \in \left< g(x) \right>$.

This means $p(x) = g(x) \cdot h(x)$ for some $h(x) \in F[x]$.

Sine $p(x)$ is irreducible, $g(x)$ or $h(x)$ is an unit.

(Case 1) If $h(x)$ is an unit, then $\left< p(x) \right> = \left< g(x) \right>$.

This contradicts to $\left< p(x) \right> < \left< g(x) \right>$.

(Case 2) Therefore $g(x)$ is a unit, then this means $1 \in \left< g(x) \right>$ and $\left< g(x) \right> = \left< 1 \right> = F[x]$.

This means $\left< p(x) \right>$ is a Maximal Ideal. $\blacksquare$


Example.

$x^2 - 2$ is irreducible in $\mathbb{Q}[x]$.

Therefore, $\left< x^2 - x\right>$ is a Maximal Ideal.

Therefore, $\mathbb{Q}[x] / \left< x^2 - 2 \right>$ is a Field.

\[\mathbb{Q}[x] / \left< x^2 - 2 \right> \cong \mathbb{Q}[\sqrt{2}] = \{ a + b \sqrt{2} \mid a, b \in \mathbb{Q} \}\]
proof.

Define an evaluation homomorphism $\phi_{\sqrt{2}}$

\[\begin{aligned} \phi_{\sqrt{2}}: \mathbb{Q}[x] &\longrightarrow \mathbb{Q}[\sqrt{2}]\\ f(x) &\longmapsto f(\sqrt{2}) \end{aligned}\]

(1) $\phi_{\sqrt{2}}$ is a homomorphism.

์ƒ-๋žต

(2) $\phi_{\sqrt{2}}$ is onto

for $a+b\sqrt{2} \in \mathbb{[\sqrt{2}]}$, there exist an inverse image.

for example $a+bx \in \mathbb{Q}[x]$ is one of it.


(Claim) $\ker \phi = \left< x^2 - 2 \right>$.

Since $(\sqrt{2})^2 - 2 = 0$, $\left< x^2 - 2 \right> \subseteq \ker \phi$

For $p(x) \in \ker \phi$, $p(\sqrt{2}) = 0$ and $p(-\sqrt{2}) = 0$.

And also $p(x)$ have rational coefficients, therefore $(x^2 - 2) \mid p(x)$.

This means $p(x) \in \left< x^2 - 2 \right>$.

$\implies$ $\ker \phi \subseteq \left< x^2 - 2 \right>$.

$\therefore \ker \phi = \left< x^2 - 2 \right>$.

By FHT,

\[\begin{aligned} \mathbb{Q}[x] / \ker \phi &\cong \phi[\mathbb{Q}[x]] \\ \mathbb{Q}[x] / \left< x^2 - 2 \right> &\cong \mathbb{Q}[\sqrt{2}] \end{aligned}\]

$\blacksquare$


Example.

$x^2 + 1$ is irreducible in $\mathbb{R}[x]$.

$\mathbb{R}[x] / \left< x^2 + 1 \right> \cong \mathbb{C}$ is a Field.



Theorem

Let $p(x) \in F[x]$

$p(x)$ irreducible in $F[x]$

$\iff$ $p(x)$ is a prime element of $F[x]$.

proof.

($\implies$)

Let $p(x)$ be a irreducible in $F[x]$.

By Theorem above, $\left< p(x) \right>$ is a Maximal Ideal.

By Theorem of Maximal Ideal, $\left< p(x) \right>$ is a Prime Ideal.

$\implies$ $p(x)$ is a Prime element.

(๋ณด์ถฉ) Thm 27.24์—์„œ ์šฐ๋ฆฌ๋Š” Field์—์„œ ์œ ๋„๋˜๋Š” ideal์€ ๋ชจ๋‘ principal์ž„์„ ๋ณด์˜€๋‹ค. ๋”ฐ๋ผ์„œ $F[x]$๋Š” PID๊ฐ€ ๋œ๋‹ค.

์ด๋•Œ, PID์—์„œ ๋งŒ์กฑํ•˜๋Š” ์„ฑ์งˆ ์ค‘ ํ•˜๋‚˜๋Š” โ€œPrime Ideals are generated by Prime elementsโ€๋ผ๋Š” ๊ฒƒ์ด๋‹ค.1 ์ฆ‰, $\left< p(x) \right>$๊ฐ€ Prime Ideal์ž„์„ ํ™•์ธํ•œ๋‹ค๋ฉด, $\left< p(x) \right>$๋ฅผ ์ƒ์„ฑํ•˜๋Š” $p(x)$๋ผ๋Š” Prime element๊ฐ€ ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ž˜์„œ ์‚ฌ์‹ค $\implies$ ๋ฐฉํ–ฅ ๋ช…์ œ๋ฅผ ์ฆ๋ช…ํ•˜๋Š” ๊ณผ์ •์—์„œ โ€œPrime Ideals are generated by Prime elementsโ€ ๋ช…์ œ๋ฅผ ์ฆ๋ช…ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค.


proof. โ€œEvery Principal Prime Ideal is generated by a Prime elementโ€

Let $F$ be a PID, and $I \trianglelefteq F$ be a Prime Ideal.

Since $I \in \textrm{PID} = F$, $I = \left< a \right>$ for some $a \in F$.

Since $I$ is a Prime Ideal,

if $nm \in I$, then $n \in I$ or $m \in I$.


(Check) $a \mid nm$ implies $a \mid n$ or $a \mid m$.

Let $nm \in I$, then $a \mid nm$ ($\because I = \left< a \right>$)

  • if $n \in I$, then $a \mid n$.
  • if $m \in I$, then $a \mid m$.

Therefore, $a$ is a Prime element, and Every Principal Prime Ideal is generated by a Prime element. $\blacksquare$

($\impliedby$)

In General, a Prime element is Irreducible. Theorem


์œ„์˜ ๋ช…์ œ๊ฐ€ ์‹œ์‚ฌํ•˜๋Š” ๋ฐ”๋Š” ๋งค์šฐ ์—„์ฒญ๋‚˜๋‹ค!!

$p(x)$๊ฐ€ irreducible์ด๋ผ๊ณ  ๊ฐ€์ •ํ•œ ๊ฒƒ์ด $p(x)$๊ฐ€ prime์ด๋ผ๋Š” ๊ฑธ ์œ ๋„ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค!!

์ด๊ฒƒ์€ PID์—์„  irreducibility์™€ primality๊ฐ€ ์ผ์น˜ํ•จ์„ ์‹œ์‚ฌํ•œ๋‹ค!!!


Corollary

In PID, irreducible $\equiv$ prime

์ฆ๋ช…์€ ์œ„์˜ ๋ช…์ œ์˜ $\implies$ ๋ฐฉํ–ฅ์— ์˜ํ•ด ๋ณด์žฅ๋œ๋‹ค.