2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

2 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

PID๊ฐ€ UFD๋ฅผ ๋งŒ์กฑํ•จ์„ ์ฆ๋ช…ํ•˜๋Š” ํฌ์ŠคํŠธ๋Š” ์ด๊ณณ์—์„œ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.




Theorem. Fundamental Theorem of Arithmetic

The integral domain $\mathbb{Z}$ is a UFD


proof.

$\mathbb{Z}$์˜ ๋ชจ๋“  Ideal์€ ๋ชจ๋‘ principal ideal์ด๋‹ค.

$n\mathbb{Z} = \left< n \right>$

๋”ฐ๋ผ์„œ $\mathbb{Z}$๊ฐ€ PID์ด๋ฏ€๋กœ $\mathbb{Z}$๋Š” UFD์ด๋‹ค. $\blacksquare$

Fundamental Theorem of Arithmetic (์‚ฐ์ˆ ์˜ ๊ธฐ๋ณธ์ •๋ฆฌ)์€ โ€œUnique Factorization Theoremโ€์œผ๋กœ๋„ ๋ถˆ๋ฆฐ๋‹ค.


์‚ฐ์ˆ ์˜ ๊ธฐ๋ณธ์ •๋ฆฌ๋ฅผ ๋‹ค๋ฅด๊ฒŒ ํ‘œํ˜„ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

For a natural number $n > 2$,

can have an unique factorization.

\[n = p_1 p_2 \cdots p_r\]

and it is isomorphic upto re-orderings.


์ด๊ฒƒ์„ ์ข€๋” ์ง‘์•ฝํ•ด ํ˜•ํƒœ๋กœ ํ‘œํ˜„ํ•˜๋ฉด ์•„๋ž˜ ๊ฐ™๋‹ค.

\[n = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}\]

์•ž์—์„œ๋Š” ๋Œ€์ˆ˜์ ์ธ ๊ตฌ์กฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‚ฐ์ˆ ์˜ ๊ธฐ๋ณธ์ •๋ฆฌ๋ฅผ ์ฆ๋ช…ํ–ˆ๋‹ค๋ฉด, ์ด๋ฒˆ์—๋Š” ์ˆ˜๋ก ์˜ ๊ด€์ ์—์„œ ์ฆ๋ช…์„ ํ•ด๋ณด์ž!


proof.

์ฆ๋ช…์€ ๊ท€๋‚ฉ๋ฒ•์— ์˜ํ•ด ์ง„ํ–‰๋œ๋‹ค.

(Base case) $n=2$์— ๋Œ€ํ•ด์„  $2=2$, $n=3$์— ๋Œ€ํ•ด์„  $3=3$, $n=4$์— ๋Œ€ํ•ด์„  $4=2^2$์˜ ์œ ์ผํ•œ ์†Œ์ธ์ˆ˜๋ถ„ํ•ด๊ฐ€ ์กด์žฌํ•œ๋‹ค.

(Induction step) ์ž์—ฐ์ˆ˜ $n=N$์—์„œ ์œ ์ผํ•œ ์†Œ์ธ์ˆ˜๋ถ„ํ•ด๊ฐ€ ์กด์žฌํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ , $N+1$์˜ ๊ฒฝ์šฐ๋ฅผ ์‚ดํŽด๋ณด์ž.

* Case 1: $N+1$๊ฐ€ ์†Œ์ˆ˜

$N+1$๊ฐ€ ์†Œ์ˆ˜๋ผ๋ฉด, ์ด๋ฏธ ์œ ์ผํ•œ ์†Œ์ธ์ˆ˜๋ถ„ํ•ด๋ฅผ ๊ฐ–๋Š”๋‹ค.

* Case 2: $N+1$๊ฐ€ ํ•ฉ์„ฑ์ˆ˜

$N+1$๊ฐ€ ํ•ฉ์„ฑ์ˆ˜์ด๋ฏ€๋กœ 1์ด ์•„๋‹Œ ๋‘ ์ž์—ฐ์ˆ˜์˜ ๊ณฑ์œผ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค.

\[N+1 = n_1 n_2\]

$N$๊นŒ์ง€์˜ ๋ชจ๋“  ์ž์—ฐ์ˆ˜์— ๋Œ€ํ•ด ์šฐ๋ฆฌ๋Š” ์œ ์ผํ•œ ์†Œ์ธ์ˆ˜๋ถ„ํ•ด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค.

๋”ฐ๋ผ์„œ $n_1$, $n_2$๋Š” ๋ชจ๋‘ uniquely factorize ๋œ๋‹ค.

$n_1$, $n_2$์˜ factorization์„ ๊ณฑํ•ด $N+1$์˜ factorization์„ ๊ตฌํ•  ์ˆ˜ ์žˆ๊ณ , ์ด๋Š” ์œ ์ผํ•˜๋‹ค.

(๋งŒ์•ฝ ์ด ์œ ์ผ์„ฑ์ด ์˜์‹ฌ๋œ๋‹ค๋ฉด, ๋˜๋‹ค๋ฅธ factorization์„ ๊ฐ€์ •ํ•˜๊ณ  ๋‘ factorization์ด ๊ฐ™์Œ์„ ๋ณด์ด๋ฉด ๋œ๋‹ค. ์•ž์˜ UFD2 ํฌ์ŠคํŠธ์—์„œ ํ–ˆ๋˜ ๊ณผ์ •๊ณผ ๋น„์Šทํ•˜๋‹ค.)

๋”ฐ๋ผ์„œ ์ž์—ฐ์ˆ˜ $\mathbb{N}$์€ UFD์ด๋‹ค. $\blacksquare$