2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

20 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

UFD์— ๋Œ€ํ•œ ์ฒซ๋ฒˆ์งธ ํฌ์ŠคํŠธ๋Š” ์ด๊ณณ์—์„œ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


์ด ํฌ์ŠคํŠธ์˜ ๋ชฉํ‘œ๋Š” โ€œEvery PID is UFD.โ€๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์ด๋‹ค.

๊ทธ ์ „์— PID์—์„œ ๋งŒ์กฑํ•˜๋˜ ์„ฑ์งˆ๊ณผ UFD์—์„œ ๋งŒ์กฑํ•˜๋˜ ์„ฑ์งˆ์„ ๋‚˜์—ดํ•ด๋ณด์ž. ๋‘˜๋‹ค Irreduciblility์™€ Primality๊ฐ€ ๋™์น˜๋‹ค.


Properties. PID

  • For a Field $F$, Every $F[x]$ is PID.
  • Irreducible element $\equiv$ Prime element


Properties. UFD

  • Irreducible element $\equiv$ Prime element


์ฆ๋ช…์€ ๋‘ ๊ฐ€์ง€ step์œผ๋กœ ์ง„ํ–‰๋œ๋‹ค.

๋จผ์ € PID๊ฐ€ UFD์˜ ์ฒซ๋ฒˆ์งธ ์กฐ๊ฑด์ธ

โ€œUFD์˜ ๋ชจ๋“  non-zero & non-unit ์›์†Œ๋Š” finite number of irreducibles๋กœ factorization๋œ๋‹ค.โ€


๋ฅผ ๋งŒ์กฑํ•จ์„ ์ฆ๋ช…ํ•œ๋‹ค. link

๊ทธ๋ฆฌ๊ณ  UFD์˜ ๋‘๋ฒˆ์งธ ์กฐ๊ฑด์ธ

โ€œFactorization is same upto reordering and associatesโ€


๋ฅผ ์ฆ๋ช…ํ•œ๋‹ค!! link



๋ณธ๊ฒฉ์ ์œผ๋กœ ์ฆ๋ช…์„ ํ•˜๊ธฐ ์ „์— ๋ช‡๊ฐ€์ง€ ๋ช…์ œ๋ฅผ ๋จผ์ € ์ฆ๋ช…ํ•˜์ž. ๋ช…์ œ๋ฅผ ์ฆ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ๋ฐ”ํƒ•์ด ๊ฝค ๋งŽ์œผ๋‹ˆ ์ง‘์ค‘ํ•ด์„œ ํ•œ๋‹ค.


Proposition.

$D$: Integral Domain

$\implies$ $D[x]$: Integral Domain

proof.

Integral Domain์ž„์„ ๋ณด์ด๊ธฐ ์œ„ํ•ด zero-divisor๊ฐ€ ์—†์Œ์„ ๋ณด์—ฌ์•ผ ํ•œ๋‹ค.

๊ทธ๋ž˜์„œ $f(x), g(x) \in D[x]$์— ๋Œ€ํ•ด $f(x)g(x) = 0$์ด๋ผ๋ฉด, $f(x) = 0$ ๋˜๋Š” $g(x) = 0$์ž„์„ ๋ณด์—ฌ์•ผ ํ•œ๋‹ค.

Let two non-zero polynomial $f(x), g(x) \in D[x]$.

\[\begin{aligned} f(x) = \sum^{n}_{i=0} a_i x^i \quad (a_n \ne 0)\\ g(x) = \sum^{m}_{i=0} b_i x^i \quad (b_m \ne 0) \end{aligned}\]

then, for $f(x)g(x)$, the coefficient of term $x^{n+m}$ is $a_n b_m \ne 0$.

Therefore $f(x)g(x)$ never be zero.

This means $D[x]$ is an Integral Domain. $\blacksquare$



Theorem 23.20

If $F$ is a Field,

then every non-constant polynomial $f(x) \in F[x]$ can be factored into a product of irreducible poylnomials.

This factorization is unique up to orerding and associates.

proof.

Let $f(x) \in F[x]$ be a non-constant polyno-.

If $f(x)$ is โ€˜notโ€™ irreducible, then $f(x) = g(x)h(x)$ for some lower degrees polynomials.

If $g(x)$ and $h(x)$ are irreducible, we stop here.

If not, at least one of them factors into lower degrees polno-s.

Continuing this process, then we get

\[f(x) = p_1 (x) p_2 (x) \cdots p_r (x)\]


(Uniqueness)

Supp. $f(x) = p_1 (x) \cdots p_r (x) = q_1 (x) \cdots q_s (x)$.

$p_1(x)$๋Š” $f(x)$๋ฅผ divide ํ•˜๋ฏ€๋กœ ์‹์˜ ์šฐ๋ณ€์„ divideํ•œ๋‹ค. ๋”ฐ๋ผ์„œ $p_1 (x)$๋Š” ์ ์–ด๋„ ํ•˜๋‚˜์˜ $q_i (x)$๋ฅผ divideํ•œ๋‹ค.

์‚ฌ์‹ค ์œ„์˜ ์‚ฌ์‹ค์€ irreducibility์˜ ์ •์˜๋ฅผ ํ™•์žฅํ•œ ๊ฒƒ์ด๋‹ค.

irreducible polyno- $f(x)$์— ๋Œ€ํ•ด $f(x) \mid r(x) s(x)$๋ผ๋ฉด, $f(x) \mid r(x)$ ๋˜๋Š” $f(x) \mid s(x)$์ด๋‹ค.

์ด๊ฒƒ์„ ๋‘ ๊ฐœ polyno-์˜ product๊ฐ€ ์•„๋‹ˆ๋ผ $s$๊ฐœ polyno-์˜ product๋กœ ํ™•์žฅ์‹œ์ผœ ์ ์šฉํ•œ ๊ฒƒ์ด ์œ„์˜ ๋ช…์ œ๋‹ค.

$p_1 (x) \mid q_i (x)$๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์ž. ์ด๋•Œ, $q_i (x)$๊ฐ€ irreducible polynomial์ด๊ธฐ ๋•Œ๋ฌธ์— $p_1 (x) = u_1 q_i (x)$์ด๋‹ค. (for some unit $0 \ne u_1 \in F[x]$)

์ด๋•Œ, Polynomial Field์—์„œ๋Š” ๊ณฑ์— ๋Œ€ํ•œ ๊ตํ™˜๋ฒ•์น™์ด ์„ฑ๋ฆฝํ•˜๋ฏ€๋กœ ๋…ผ์˜์˜ ํŽธ์˜๋ฅผ ์œ„ํ•ด $q_i (x)$๋ฅผ $q_1 (x)$๋กœ ๋‘์ž. $p_1 (x) = u_1 q_1 (x)$

์ด์ œ factorization $p_1 (x) \cdots p_r (x) = q_1 (x) \cdots q_s (x)$์— ์œ„์˜ ๊ด€๊ณ„์‹์„ ์ ์šฉํ•˜๊ณ  ์†Œ๊ฑฐํ•˜์ž. ๊ทธ๋Ÿฌ๋ฉด

\[\begin{aligned} p_1 (x) \cdots p_r (x) &= q_1 (x) \cdots q_s (x)$ \\ (u_1 q_1 (x)) \cdots p_r (x) &= q_1 (x) \cdots q_s (x) \\ u_1 \cdots p_r(x) &= 1 \cdots q_s (x) \end{aligned}\]

(๋…ผ์˜์˜ ํŽธ์˜์ƒ $r < s$๋ผ๊ณ  ๊ฐ€์ •ํ•˜์ž. ๋ฐ˜๋Œ€๋กœ ์žก์•„๋„ ์ƒ๊ด€์€ ์—†๋‹ค.)

์ด ๊ณผ์ •์„ ๋ฐ˜๋ณตํ•˜๋ฉด,

$u_1 \cdots u_r = 1 \cdots q_{r+1} (x) \cdots q_s (x)$๊ฐ€ ๋œ๋‹ค.

์ด๋•Œ์— ์œ„์˜ ์‹์ด ์„ฑ๋ฆฝํ•˜๊ธฐ ์œ„ํ•ด์„  ์šฐ๋ณ€์˜ polyno- ๋ถ€๋ถ„์ด ์—†์–ด์•ผ ํ•˜๋ฏ€๋กœ $r = s$๊ฐ€ ๋˜์–ด์•ผ ํ•œ๋‹ค.

๋”ฐ๋ผ์„œ irreducible polyno- $f(x)$์˜ factorization์€ ordering๊ณผ associates์— ๋Œ€ํ•ด unique ํ•˜๊ฒŒ ์กด์žฌํ•œ๋‹ค. $\blacksquare$



1st Condition

Ascending Chain Condition (ACC)

์ด๋ฒˆ์—๋Š” ์ง‘ํ•ฉ๋ก ์—์„œ๋„ ๋“ฑ์žฅํ•˜๋Š” ๋ช…์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ƒ๊ฐ๋ณด๋‹ค ์ค‘์š”ํ•œ ๋ช…์ œ๋‹ค.

Lemma 45.9

$R$: commutative ring + unity.

Let $N_1 \subseteq N_2 \subseteq \cdots $ be an ascending chain of ideals $N_i$ in $R$.

Then, $N = \cup_i N_i$ is an Ideal in $R$.

proof.

Let $a, b \in N$.

Then, there are ideals $N_i$ and $N_j$ in ideal chain, with $a \in N_i$ and $b \in N_j$.

Now either $N_i \subseteq N_j$ or $N_i \supseteq N_j$.

Letโ€™s assume $N_i \subseteq N_j$, so both $a$ and $b$ are in $N_j$.

This implies $a \pm b$ and $ab$ are also in $N_j$, and also be in $N$.

Take $a = 0$, then $0 \in N$, and $b \in N$ implies $-b \in N$.

Thus $N$ be a sub-ring of $R$.


โ€œCheck $N$ is an ideal.โ€

For $a \in N$, $r \in R$, we must have $a \in N_i$ for some $N_i$.

Since $N_i$ is an ideal, $ar = ra \in N_i$, and also in $\cup_i N_i = N$.

Therefore, $N$ is an Ideal. $\blacksquare$


Lemma 45.9๋กœ๋ถ€ํ„ฐ PID์— ๋Œ€ํ•œ ACC(Ascedning Chain Condition)์„ ์œ ๋„ํ•  ์ˆ˜ ์žˆ๋‹ค!!

Lemma 45.10

Let $D$ be a PID.

If $N_1 \subseteq N_2 \subseteq \cdots$ is an ascending chain of ideals $N_i$,

then there exist a positive integer $r$ s.t. $N_r = N_s$ for all $s \ge r$.


Equivalently, every strictly ascending chain of ideals in a PID is of finite length.

๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ๊ธฐ์ˆ ํ•œ๋‹ค.

"The ACC(Ascending Chain Condition) holds for ideals in a PID."

proof.

By Lemma 45.9, we know that $N = \cup_{i} N_i$ is an ideal of $D$.

Since, now, $D$ is a PID, $N = \left< c \right>$ for some $c \in D$.

Since $N = \cup_{i} N_i$, we must have $c \in N_r$ for some $r \in \mathbb{Z}^{+}$.

Therefore, for $s \ge r$, we have

\[\left< c \right> \subseteq N_r \subseteq N_s \subseteq N = \left< c \right>\]

Thus $N_r = N_s$ for $s \ge r$.


์ด ์ •๋ฆฌ๋กœ๋ถ€ํ„ฐ ์•„๋ž˜์˜ ์„ฑ์งˆ์ด ์œ ๋„๋œ๋‹ค.

  • $b$ divides $a$ $\iff$ $\left< a \right> \subseteq \left< b \right>$.
  • $a$ and $b$ are associates $\iff$ $\left< a \right> = \left< b \right>$.

์ด ์„ฑ์งˆ์„ ์ด์šฉํ•˜๋ฉด, PID๊ฐ€ UFD๊ฐ€ ๋˜๊ธฐ ์œ„ํ•œ ์ฒซ๋ฒˆ์งธ ์กฐ๊ฑด์ธ

โ€œUFD์˜ ๋ชจ๋“  non-zero & non-unit ์›์†Œ๋Š” finite number of irreducibles๋กœ factorization๋œ๋‹ค.โ€

๋ฅผ ์ฆ๋ช…ํ•  ์ˆ˜ ์žˆ๋‹ค!!



Theorem 45.11 proof of 1st condition

Let $D$ be a PID.

Every non-zero & non-unit elt in $D$ is a product of irreducibles.

proof.

Let $a$ be a non-zero & non-unit elt in $D$.

(Step 1) show $a$ has at least one irreducible factor.

If $a$ is already irreducible, we are done!

If $a$ is not an irreducible,

then $a = a_1 b_1$, where neither $a_1$ nor $b_1$ is a unit.
(๋งŒ์•ฝ $a_1$์™€ $b_1$์ด ๋‘˜๋‹ค unit์ด๋ผ๋ฉด, $a$๊ฐ€ unit์ด ๋˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.)

์•ž์—์„œ ๋ณด์ธ ์„ฑ์งˆ์— ์˜ํ•ด

\[\left< a \right> \subseteq \left< a_1 \right>\]

์ด๋‹ค.

์ด๋•Œ, $\left< a \right> = \left< a_1 \right>$๊ฐ€ ๋˜๋Š” ๊ฒฝ์šฐ๋Š” $a$์™€ $a_1$์ด associate ํ•˜๋Š” ๊ฒฝ์šฐ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿด ๊ฒฝ์šฐ $b_1$์ด unit์ด ๋˜๋ฏ€๋กœ ๋ชจ์ˆœ์ด๋‹ค.

๋”ฐ๋ผ์„œ ๋“ฑํ˜ธ๋ฅผ ๋บ€ $\left< a \right> \subset \left< a_1 \right>$๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค.


์ด์ œ $a_1$์—์„œ ์‹œ์ž‘ํ•ด ์œ„์˜ ๊ณผ์ •์„ ๊ณ„์†ํ•ด์„œ ์ ์šฉํ•˜๋ฉด, strictly ascending chain of ideals๋ฅผ ์–ป๋Š”๋‹ค.

\[\left< a \right> \subset \left< a_1 \right> \subset \left< a_2 \right> \subset \cdots\]

์•ž์—์„œ ๋ณด์ธ ACC (Lemma 45.10)์— ์˜ํ•ด ์ด chain์€ ์–ด๋–ค $\left< a_r \right>$์—์„œ ๋๋‚˜๋ฉฐ $a_r$์€ irreducibleํ•ด์•ผ ํ•œ๋‹ค.
(PID์—์„œ ๋ชจ๋“  principal ideal์€ prime elt์— ์˜ํ•ด ์œ ๋„๋œ๋‹ค. ์ด๋•Œ PID์—์„  prime๊ณผ irreducible์ด ๋™์น˜์ด๊ธฐ ๋•Œ๋ฌธ์— $a_r$์€ prime์ด๋ฉด์„œ irreducible์ด๋‹ค!)

๋”ฐ๋ผ์„œ $a$๋Š” irreducible factor $a_r$์„ ๊ฐ–๋Š”๋‹ค.


์šฐ๋ฆฌ๊ฐ€ ์œ ๋„ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•˜์ž.

for non-zero & non-unit elt $a$, $a = p_1 c_1$ for an irreducible $p_1$ and $c_1$ not a unit.

In this way, we want do same thing on $c_1$; $c_1 = p_2 c_2$.

Then we get this ascedning chain of ideals.

\[\left< a \right> \subset \left< c_1 \right> \subset \left< c_2 \right> \subset \cdots\]

By Lemma 45.10, this chain must terminate at for some $p_r$.

Therefore $a = p_1 p_2 \cdots p_r$.

This means, in PID, non-zero & non-unit can be factorized into a product of irreducibles. $\blacksquare$



2nd Condition

์•ž์—์„œ๋„ ์–ธ๊ธ‰ํ–ˆ๋˜ ์ •๋ฆฌ์ธ๋ฐ ๋‹ค์‹œ ํ•œ๋ฒˆ ์‚ดํŽด๋ณด์ž! ์šฐ๋ฆฌ์˜ ๋ชฉํ‘œ๋Š” ์•„๋ž˜์˜ ์ •๋ฆฌ๋ฅผ ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

Theorem 23.20

If $F$ is a Field, then every non-constant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials.

The product of irreducible poylnomials is unique except for order and unit.



Maximal ~ Irreducible

Theorem 27.25

An ideal $\left< p(x) \right> \ne \{0\}$ of $F[x]$ is maximal

$\iff$ $p(x)$ is irreducible over $F$.


Lemma 45.12 (Generalization of Thm 27.25)

An ideal $\left< p \right>$ in a PID is maximal

$\iff$ $p$ is an irreducible.

proof.

($\implies$)

Supp. $\left< p \right>$ be a maximal ideal of PID $D$.

Supp that $p=ab$ in $D$.

Then, $\left< p \right> \subseteq \left< a \right>$.

(Case 1) Supp. that $\left< p \right> = \left< a \right>$.

Then $p$ and $a$ would be associates, so $b$ must be a unit.
($b$๊ฐ€ $p$-$a$ ์‚ฌ์ด unit์˜ ์—ญํ• ์„ ํ•˜๋Š” ๊ฒƒ)

(Case 2) If $\left< p \right> \ne \left< a \right>$

then we must have $\left< a \right> = \left< 1 \right> = D$,

since $\left< p \right>$ is maximal.

Then $a$ and $1$ are associates, so $a$ is a unit.

Thus, if $p = ab$, either $a$ or $b$ must be a unit.

This means $p$ is an irreducible of $D$. $\blacksquare$

($\impliedby$)

Supp. $p$ is an irreducible in $D$.

If $\left< p \right> \subseteq \left< a \right>$, we must have $p = ab$.

(Case 1) If $a$ is a unit, (์™œ๋ƒํ•˜๋ฉด $p$๊ฐ€ irreducible)

then $\left< a \right> = \left< 1 \right> = D$.

(Case 2) If $a$ is not a unit,

then $b$ must be a unit. (์™œ๋ƒํ•˜๋ฉด $p$๊ฐ€ irreducible)

So there exist $u \in D$ s.t. $bu = 1$.

Then $pu = a(bu) = a$, so $\left< a \right> \subseteq \left< p \right>$.

์šฐ๋ฆฌ๊ฐ€ ์ฒ˜์Œ์— $\left< p \right> \subseteq \left< a \right>$๋ฅผ ๊ฐ€์ •ํ–ˆ์œผ๋ฏ€๋กœ ๊ฒฐ๊ตญ $\left< p \right> = \left< a \right>$๊ฐ€ ๋œ๋‹ค.


์ •๋ฆฌํ•˜๋ฉด, $\left< p \right> \subseteq \left< a \right>$๋Š”

(Case 1) $\left< a \right> = D$ ๋˜๋Š”

(Case 2) $\left< p \right> = \left< a \right>$ and $\left< p \right> \ne D$ ($a$ is not unit) ๋˜๋Š”

$p$ would be a unit ($a$, $b$ ๋ชจ๋‘ unit์ผ ๋•Œ)


์ด๊ฒƒ์€ ๊ฒฐ๊ตญ $\left< p \right>$๋ณด๋‹ค ํฌ๋‹ค๊ณ  ๊ฐ€์ •ํ•œ ideal $\left< a \right>$์ด $D$ ์ž์ฒด๊ฐ€ ๋˜๊ฑฐ๋‚˜ $\left< p \right>$ ์ž์‹ ์ด ๋œ๋‹ค๋Š” ๋ง์ด๊ธฐ ๋•Œ๋ฌธ์— $\left< p \right>$๊ฐ€ Maximal Ideal์ž„์„ ์˜๋ฏธํ•œ๋‹ค. $\blacksquare$



Irreducible ~ Prime

Theorem 27.27

Let $p(x)$ be an irreducible polynomial in $F[x]$.

If $p(x)$ divides $r(x)s(x)$ for $r(x), s(x) \in F[x]$,

then either $p(x) \mid r(x)$ or $p(x) \mid s(x)$.


Lemma 45.13 (Generalization of Thm 27.27)

In a PID, if an irreducible $p$ divides $ab$,

then either $p \mid a$ or $p \mid b$.

proof.

Let $D$ be a PID, and Supp. that for an irreducible $p \in D$ we have $p \mid ab$.

Then $(ab) \in \left< p \right>$.

๋˜ํ•œ ์•ž์—์„œ โ€œLemma 45.12โ€์—์„œ PID์˜ irreducible elt๋Š” maxial ideal์„ ์ƒ์„ฑํ•จ์„ ํ™•์ธํ–ˆ๋‹ค.

Since every maximal ideal in PID is a prime ideal by โ€œCorollary 27.16โ€,

$(ab) \in \left< p \right>$ implies that either $a \in \left< p \right>$ or $b \in \left< p \right>$.

๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์€ either $p \mid a$ or $p \mid b$๋ฅผ ์œ ๋„ํ•œ๋‹ค. $\blacksquare$


Corollary 45.14 (Generalization of Lemma 45.13)

If $p$ is an irreducible in a PID and $p \mid a_1 a_2 \cdots a_n$ for $a_i \in D$.

Then $p \mid a_i$ for at least one $i$.

์‚ฌ์‹ค ์œ„์—์„œ ์–ธ๊ธ‰ํ•œ ์„ฑ์งˆ์€ โ€œPrimalityโ€œ์— ๋Œ€ํ•œ ๊ฒƒ์ด๋‹ค.

์ฆ‰, PID์˜ irreducible์ด prime์„ ์œ ๋„ํ•œ๋‹ค๋Š” ๋ช…์ œ๊ฐ€ โ€œLemma 45.13โ€์ด๋‹ค.



Example 45.16

Let $F$ be a Field, and $D$ be the sub-domain $F[x^3, xy, y^3]$ of $F[x, y]$.

Then $x^3$, $xy$, $y^3$ are irreducible in $D$, but

\[(x^3)(y^3) = (xy)(xy)(xy)\]

Since $xy$ divides $x^3y^3$ but not $x^3$ or $y^3$,

$xy$ is not a prime.

In similar way, neither $x^3$ nor $y^3$ is a prime.

์œ„ ์˜ˆ์ œ๋Š” Integral Domain์—์„œ๋Š” irreducible์ด prime์„ ์˜๋ฏธํ•˜์ง€ ์•Š์„ ์ˆ˜๋„ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค!



์ด์ œ ์šฐ๋ฆฌ๊ฐ€ ๋ชฉํ‘œ๋กœ ํ–ˆ๋˜ ์ •๋ฆฌ, โ€œThm 23.20โ€์„ ์ผ๋ฐ˜ํ™”ํ•œ ๋ช…์ œ๋ฅผ ์‚ดํŽด๋ณด์ž!!


Theorem 45.17 (Generalization of Thm 23.20)

Every PID is a UFD.


proof.

Thm 45.11 shows that if $D$ is a PID, then each non-zero & non-unit $a \in D$ has a factorization into irreducibles. (1st Condition)

\[a = p_1 p_2 \cdots p_r\]

์ด์ œ ๋‚จ์€ ๊ฒƒ์€ ์œ„์˜ irreducible factorization์— ๋Œ€ํ•œ โ€˜์œ ์ผ์„ฑโ€™์„ ๋ณด์ด๋Š” ๊ฒƒ์ด๋‹ค.

Let $a = q_1 q_2 \cdots q_s$ be another irreucible factorization.

์œ„์™€ ๊ฐ™์ด ๋˜๋‹ค๋ฅธ irreducible factorization์„ ๊ฐ€์ •ํ•œ๋‹ค๋ฉด,

\[p_1 \mid (q_1 q_2 \cdots q_s)\]

๊ฐ€ ๋˜๋ฉฐ, ์ด๊ฒƒ์€ $p_1 \mid q_j$ for some $j$๋ฅผ ์˜๋ฏธํ•œ๋‹ค. (Cor 45.14)

$q_j$์˜ ์ˆœ์„œ๋ฅผ ์ ๋‹นํžˆ ๋ฐ”๊ฟˆ์œผ๋กœ์จ ์šฐ๋ฆฌ๋Š” $j=1$๋ผ๊ณ  ๊ฐ€์ •ํ•  ์ˆ˜ ์žˆ๊ณ , ๋”ฐ๋ผ์„œ $p_1 \mid q_1$๊ฐ€ ๋œ๋‹ค.

๊ทธ๋Ÿฌ๋ฉด, $q_1 = p_1 u_1$ for some unit $u_1$.

๋”ฐ๋ผ์„œ irreducible factorization์€ ์•„๋ž˜์™€ ๊ฐ™์ด ๋‹ค์‹œ ์“ธ ์ˆ˜ ์žˆ๋‹ค.

\[p_1 p_2 \cdots p_r = p_1 u_1 q_2 \cdots q_s\]

Integral Domain $D$ ์•„๋ž˜์—์„œ์˜ ์†Œ๊ฑฐ๋ฒ•์— ์˜ํ•ด

\[p_2 \cdots p_r = u_1 q_2 \cdots q_s\]

๊ฐ€ ๋œ๋‹ค.

์ด ๊ณผ์ •์„ ๋ฐ˜๋ณตํ•˜๋ฉด, ์•„๋ž˜์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป๋Š”๋‹ค.

\[1 = u_1 u_2 \cdots u_r \cdot q_{r+1} \cdots q_s\]

๊ฐ€์ •์— ์˜ํ•ด $q_j$๋Š” ๋ชจ๋‘ irreducible์ด๋ฏ€๋กœ ์œ„์˜ ๋“ฑ์‹์ด ๋งŒ์กฑํ•˜๊ธฐ ์œ„ํ•ด์„  $r=s$๊ฐ€ ๋˜์–ด์•ผ ํ•œ๋‹ค.


์ข…ํ•ฉํ•˜๋ฉด PID ์•„๋ž˜์—์„œ ๋ชจ๋“  non-zero & non-unit elt๋Š” ๋ชจ๋‘ unique irreducible factorization์„ ๊ฐ–๋Š”๋‹ค.

๊ทธ๋ฆฌ๊ณ  Lemma 45.13์— ์˜ํ•ด PID์—์„  irreducible์ด prime์ด๊ธฐ ๋•Œ๋ฌธ์— PID์˜ ์›์†Œ๋Š” unique prime factorization์„ ๊ฐ€์ง„๋‹ค.

๋”ฐ๋ผ์„œ PID๋Š” UFD์ด๋‹ค. $\blacksquare$



PID๊ฐ€ UFD์ž„์„ ๋งํ•˜๋Š” Theorem 45.17๋ฅผ ํ†ตํ•ด ์šฐ๋ฆฌ๋Š” ์ •์ˆ˜ $\mathbb{Z}$์— ๋Œ€ํ•œ ๊ฐ€์žฅ ๊ทผ๋ณธ์ ์ธ ๋ช…์ œ์ธ โ€œFundamental Theorem of Arithmeticโ€์„ ์œ ๋„ํ•  ์ˆ˜ ์žˆ๋‹ค!! link