Unique Factorization Domain - 2
2020-2ํ๊ธฐ, ๋ํ์์ โํ๋๋์1โ ์์ ์ ๋ฃ๊ณ ๊ณต๋ถํ ๋ฐ๋ฅผ ์ ๋ฆฌํ ๊ธ์ ๋๋ค. ์ง์ ์ ์ธ์ ๋ ํ์์ ๋๋ค :)
UFD์ ๋ํ ์ฒซ๋ฒ์งธ ํฌ์คํธ๋ ์ด๊ณณ์์ ๋ณผ ์ ์์ต๋๋ค.
์ด ํฌ์คํธ์ ๋ชฉํ๋ โEvery PID is UFD.โ๋ฅผ ๋ณด์ด๋ ๊ฒ์ด๋ค.
๊ทธ ์ ์ PID์์ ๋ง์กฑํ๋ ์ฑ์ง๊ณผ UFD์์ ๋ง์กฑํ๋ ์ฑ์ง์ ๋์ดํด๋ณด์. ๋๋ค Irreduciblility์ Primality๊ฐ ๋์น๋ค.
Properties. PID
- For a Field $F$, Every $F[x]$ is PID.
- Irreducible element $\equiv$ Prime element
Properties. UFD
- Irreducible element $\equiv$ Prime element
์ฆ๋ช ์ ๋ ๊ฐ์ง step์ผ๋ก ์งํ๋๋ค.
๋จผ์ PID๊ฐ UFD์ ์ฒซ๋ฒ์งธ ์กฐ๊ฑด์ธ
๋ฅผ ๋ง์กฑํจ์ ์ฆ๋ช ํ๋ค. link
๊ทธ๋ฆฌ๊ณ UFD์ ๋๋ฒ์งธ ์กฐ๊ฑด์ธ
๋ฅผ ์ฆ๋ช ํ๋ค!! link
๋ณธ๊ฒฉ์ ์ผ๋ก ์ฆ๋ช ์ ํ๊ธฐ ์ ์ ๋ช๊ฐ์ง ๋ช ์ ๋ฅผ ๋จผ์ ์ฆ๋ช ํ์. ๋ช ์ ๋ฅผ ์ฆ๋ช ํ๊ธฐ ์ํด ํ์ํ ๋ฐํ์ด ๊ฝค ๋ง์ผ๋ ์ง์คํด์ ํ๋ค.
Proposition.
$D$: Integral Domain
$\implies$ $D[x]$: Integral Domain
proof.
Integral Domain์์ ๋ณด์ด๊ธฐ ์ํด zero-divisor๊ฐ ์์์ ๋ณด์ฌ์ผ ํ๋ค.
๊ทธ๋์ $f(x), g(x) \in D[x]$์ ๋ํด $f(x)g(x) = 0$์ด๋ผ๋ฉด, $f(x) = 0$ ๋๋ $g(x) = 0$์์ ๋ณด์ฌ์ผ ํ๋ค.
Let two non-zero polynomial $f(x), g(x) \in D[x]$.
\[\begin{aligned} f(x) = \sum^{n}_{i=0} a_i x^i \quad (a_n \ne 0)\\ g(x) = \sum^{m}_{i=0} b_i x^i \quad (b_m \ne 0) \end{aligned}\]then, for $f(x)g(x)$, the coefficient of term $x^{n+m}$ is $a_n b_m \ne 0$.
Therefore $f(x)g(x)$ never be zero.
This means $D[x]$ is an Integral Domain. $\blacksquare$
Theorem 23.20
If $F$ is a Field,
then every non-constant polynomial $f(x) \in F[x]$ can be factored into a product of irreducible poylnomials.
This factorization is unique up to orerding and associates.
proof.
Let $f(x) \in F[x]$ be a non-constant polyno-.
If $f(x)$ is โnotโ irreducible, then $f(x) = g(x)h(x)$ for some lower degrees polynomials.
If $g(x)$ and $h(x)$ are irreducible, we stop here.
If not, at least one of them factors into lower degrees polno-s.
Continuing this process, then we get
\[f(x) = p_1 (x) p_2 (x) \cdots p_r (x)\](Uniqueness)
Supp. $f(x) = p_1 (x) \cdots p_r (x) = q_1 (x) \cdots q_s (x)$.
$p_1(x)$๋ $f(x)$๋ฅผ divide ํ๋ฏ๋ก ์์ ์ฐ๋ณ์ divideํ๋ค. ๋ฐ๋ผ์ $p_1 (x)$๋ ์ ์ด๋ ํ๋์ $q_i (x)$๋ฅผ divideํ๋ค.
์ฌ์ค ์์ ์ฌ์ค์ irreducibility์ ์ ์๋ฅผ ํ์ฅํ ๊ฒ์ด๋ค.
irreducible polyno- $f(x)$์ ๋ํด $f(x) \mid r(x) s(x)$๋ผ๋ฉด, $f(x) \mid r(x)$ ๋๋ $f(x) \mid s(x)$์ด๋ค.
์ด๊ฒ์ ๋ ๊ฐ polyno-์ product๊ฐ ์๋๋ผ $s$๊ฐ polyno-์ product๋ก ํ์ฅ์์ผ ์ ์ฉํ ๊ฒ์ด ์์ ๋ช ์ ๋ค.
$p_1 (x) \mid q_i (x)$๊ฐ ์ฑ๋ฆฝํ๋ค๊ณ ๊ฐ์ ํ์. ์ด๋, $q_i (x)$๊ฐ irreducible polynomial์ด๊ธฐ ๋๋ฌธ์ $p_1 (x) = u_1 q_i (x)$์ด๋ค. (for some unit $0 \ne u_1 \in F[x]$)
์ด๋, Polynomial Field์์๋ ๊ณฑ์ ๋ํ ๊ตํ๋ฒ์น์ด ์ฑ๋ฆฝํ๋ฏ๋ก ๋ ผ์์ ํธ์๋ฅผ ์ํด $q_i (x)$๋ฅผ $q_1 (x)$๋ก ๋์. $p_1 (x) = u_1 q_1 (x)$
์ด์ factorization $p_1 (x) \cdots p_r (x) = q_1 (x) \cdots q_s (x)$์ ์์ ๊ด๊ณ์์ ์ ์ฉํ๊ณ ์๊ฑฐํ์. ๊ทธ๋ฌ๋ฉด
\[\begin{aligned} p_1 (x) \cdots p_r (x) &= q_1 (x) \cdots q_s (x)$ \\ (u_1 q_1 (x)) \cdots p_r (x) &= q_1 (x) \cdots q_s (x) \\ u_1 \cdots p_r(x) &= 1 \cdots q_s (x) \end{aligned}\](๋ ผ์์ ํธ์์ $r < s$๋ผ๊ณ ๊ฐ์ ํ์. ๋ฐ๋๋ก ์ก์๋ ์๊ด์ ์๋ค.)
์ด ๊ณผ์ ์ ๋ฐ๋ณตํ๋ฉด,
$u_1 \cdots u_r = 1 \cdots q_{r+1} (x) \cdots q_s (x)$๊ฐ ๋๋ค.
์ด๋์ ์์ ์์ด ์ฑ๋ฆฝํ๊ธฐ ์ํด์ ์ฐ๋ณ์ polyno- ๋ถ๋ถ์ด ์์ด์ผ ํ๋ฏ๋ก $r = s$๊ฐ ๋์ด์ผ ํ๋ค.
๋ฐ๋ผ์ irreducible polyno- $f(x)$์ factorization์ ordering๊ณผ associates์ ๋ํด unique ํ๊ฒ ์กด์ฌํ๋ค. $\blacksquare$
1st Condition
Ascending Chain Condition (ACC)
์ด๋ฒ์๋ ์งํฉ๋ก ์์๋ ๋ฑ์ฅํ๋ ๋ช ์ ๋ฅผ ๋ค๋ฃฌ๋ค. ์๊ฐ๋ณด๋ค ์ค์ํ ๋ช ์ ๋ค.
Lemma 45.9
$R$: commutative ring + unity.
Let $N_1 \subseteq N_2 \subseteq \cdots $ be an ascending chain of ideals $N_i$ in $R$.
Then, $N = \cup_i N_i$ is an Ideal in $R$.
proof.
Let $a, b \in N$.
Then, there are ideals $N_i$ and $N_j$ in ideal chain, with $a \in N_i$ and $b \in N_j$.
Now either $N_i \subseteq N_j$ or $N_i \supseteq N_j$.
Letโs assume $N_i \subseteq N_j$, so both $a$ and $b$ are in $N_j$.
This implies $a \pm b$ and $ab$ are also in $N_j$, and also be in $N$.
Take $a = 0$, then $0 \in N$, and $b \in N$ implies $-b \in N$.
Thus $N$ be a sub-ring of $R$.
โCheck $N$ is an ideal.โ
For $a \in N$, $r \in R$, we must have $a \in N_i$ for some $N_i$.
Since $N_i$ is an ideal, $ar = ra \in N_i$, and also in $\cup_i N_i = N$.
Therefore, $N$ is an Ideal. $\blacksquare$
Lemma 45.9๋ก๋ถํฐ PID์ ๋ํ ACC(Ascedning Chain Condition)์ ์ ๋ํ ์ ์๋ค!!
Lemma 45.10
Let $D$ be a PID.
If $N_1 \subseteq N_2 \subseteq \cdots$ is an ascending chain of ideals $N_i$,
then there exist a positive integer $r$ s.t. $N_r = N_s$ for all $s \ge r$.
Equivalently, every strictly ascending chain of ideals in a PID is of finite length.
๊ทธ๋์ ์ฐ๋ฆฌ๋ ์๋์ ๊ฐ์ด ๊ธฐ์ ํ๋ค.
proof.
By Lemma 45.9, we know that $N = \cup_{i} N_i$ is an ideal of $D$.
Since, now, $D$ is a PID, $N = \left< c \right>$ for some $c \in D$.
Since $N = \cup_{i} N_i$, we must have $c \in N_r$ for some $r \in \mathbb{Z}^{+}$.
Therefore, for $s \ge r$, we have
\[\left< c \right> \subseteq N_r \subseteq N_s \subseteq N = \left< c \right>\]Thus $N_r = N_s$ for $s \ge r$.
์ด ์ ๋ฆฌ๋ก๋ถํฐ ์๋์ ์ฑ์ง์ด ์ ๋๋๋ค.
- $b$ divides $a$ $\iff$ $\left< a \right> \subseteq \left< b \right>$.
- $a$ and $b$ are associates $\iff$ $\left< a \right> = \left< b \right>$.
์ด ์ฑ์ง์ ์ด์ฉํ๋ฉด, PID๊ฐ UFD๊ฐ ๋๊ธฐ ์ํ ์ฒซ๋ฒ์งธ ์กฐ๊ฑด์ธ
โUFD์ ๋ชจ๋ non-zero & non-unit ์์๋ finite number of irreducibles๋ก factorization๋๋ค.โ
๋ฅผ ์ฆ๋ช ํ ์ ์๋ค!!
Theorem 45.11 proof of 1st condition
Let $D$ be a PID.
Every non-zero & non-unit elt in $D$ is a product of irreducibles.
proof.
Let $a$ be a non-zero & non-unit elt in $D$.
(Step 1) show $a$ has at least one irreducible factor.
If $a$ is already irreducible, we are done!
If $a$ is not an irreducible,
then $a = a_1 b_1$, where neither $a_1$ nor $b_1$ is a unit.
(๋ง์ฝ $a_1$์ $b_1$์ด ๋๋ค unit์ด๋ผ๋ฉด, $a$๊ฐ unit์ด ๋๊ธฐ ๋๋ฌธ์ด๋ค.)
์์์ ๋ณด์ธ ์ฑ์ง์ ์ํด
\[\left< a \right> \subseteq \left< a_1 \right>\]์ด๋ค.
์ด๋, $\left< a \right> = \left< a_1 \right>$๊ฐ ๋๋ ๊ฒฝ์ฐ๋ $a$์ $a_1$์ด associate ํ๋ ๊ฒฝ์ฐ๋ค. ํ์ง๋ง ์ด๋ด ๊ฒฝ์ฐ $b_1$์ด unit์ด ๋๋ฏ๋ก ๋ชจ์์ด๋ค.
๋ฐ๋ผ์ ๋ฑํธ๋ฅผ ๋บ $\left< a \right> \subset \left< a_1 \right>$๊ฐ ์ฑ๋ฆฝํ๋ค.
์ด์ $a_1$์์ ์์ํด ์์ ๊ณผ์ ์ ๊ณ์ํด์ ์ ์ฉํ๋ฉด, strictly ascending chain of ideals๋ฅผ ์ป๋๋ค.
\[\left< a \right> \subset \left< a_1 \right> \subset \left< a_2 \right> \subset \cdots\]์์์ ๋ณด์ธ ACC (Lemma 45.10)์ ์ํด ์ด chain์ ์ด๋ค $\left< a_r \right>$์์ ๋๋๋ฉฐ $a_r$์ irreducibleํด์ผ ํ๋ค.
(PID์์ ๋ชจ๋ principal ideal์ prime elt์ ์ํด ์ ๋๋๋ค. ์ด๋ PID์์ prime๊ณผ irreducible์ด ๋์น์ด๊ธฐ ๋๋ฌธ์ $a_r$์ prime์ด๋ฉด์ irreducible์ด๋ค!)
๋ฐ๋ผ์ $a$๋ irreducible factor $a_r$์ ๊ฐ๋๋ค.
์ฐ๋ฆฌ๊ฐ ์ ๋ํ ๋ฐ๋ฅผ ์ ๋ฆฌํ์.
for non-zero & non-unit elt $a$, $a = p_1 c_1$ for an irreducible $p_1$ and $c_1$ not a unit.
In this way, we want do same thing on $c_1$; $c_1 = p_2 c_2$.
Then we get this ascedning chain of ideals.
\[\left< a \right> \subset \left< c_1 \right> \subset \left< c_2 \right> \subset \cdots\]By Lemma 45.10, this chain must terminate at for some $p_r$.
Therefore $a = p_1 p_2 \cdots p_r$.
This means, in PID, non-zero & non-unit can be factorized into a product of irreducibles. $\blacksquare$
2nd Condition
์์์๋ ์ธ๊ธํ๋ ์ ๋ฆฌ์ธ๋ฐ ๋ค์ ํ๋ฒ ์ดํด๋ณด์! ์ฐ๋ฆฌ์ ๋ชฉํ๋ ์๋์ ์ ๋ฆฌ๋ฅผ ์ผ๋ฐํํ๋ ๊ฒ์ด๋ค.
Theorem 23.20
If $F$ is a Field, then every non-constant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials.
The product of irreducible poylnomials is unique except for order and unit.
Maximal ~ Irreducible
Theorem 27.25
An ideal $\left< p(x) \right> \ne \{0\}$ of $F[x]$ is maximal
$\iff$ $p(x)$ is irreducible over $F$.
Lemma 45.12 (Generalization of Thm 27.25)
An ideal $\left< p \right>$ in a PID is maximal
$\iff$ $p$ is an irreducible.
proof.
($\implies$)
Supp. $\left< p \right>$ be a maximal ideal of PID $D$.
Supp that $p=ab$ in $D$.
Then, $\left< p \right> \subseteq \left< a \right>$.
(Case 1) Supp. that $\left< p \right> = \left< a \right>$.
Then $p$ and $a$ would be associates, so $b$ must be a unit.
($b$๊ฐ $p$-$a$ ์ฌ์ด unit์ ์ญํ ์ ํ๋ ๊ฒ)
(Case 2) If $\left< p \right> \ne \left< a \right>$
then we must have $\left< a \right> = \left< 1 \right> = D$,
since $\left< p \right>$ is maximal.
Then $a$ and $1$ are associates, so $a$ is a unit.
Thus, if $p = ab$, either $a$ or $b$ must be a unit.
This means $p$ is an irreducible of $D$. $\blacksquare$
($\impliedby$)
Supp. $p$ is an irreducible in $D$.
If $\left< p \right> \subseteq \left< a \right>$, we must have $p = ab$.
(Case 1) If $a$ is a unit, (์๋ํ๋ฉด $p$๊ฐ irreducible)
then $\left< a \right> = \left< 1 \right> = D$.
(Case 2) If $a$ is not a unit,
then $b$ must be a unit. (์๋ํ๋ฉด $p$๊ฐ irreducible)
So there exist $u \in D$ s.t. $bu = 1$.
Then $pu = a(bu) = a$, so $\left< a \right> \subseteq \left< p \right>$.
์ฐ๋ฆฌ๊ฐ ์ฒ์์ $\left< p \right> \subseteq \left< a \right>$๋ฅผ ๊ฐ์ ํ์ผ๋ฏ๋ก ๊ฒฐ๊ตญ $\left< p \right> = \left< a \right>$๊ฐ ๋๋ค.
์ ๋ฆฌํ๋ฉด, $\left< p \right> \subseteq \left< a \right>$๋
(Case 1) $\left< a \right> = D$ ๋๋
(Case 2) $\left< p \right> = \left< a \right>$ and $\left< p \right> \ne D$ ($a$ is not unit) ๋๋
$p$ would be a unit ($a$, $b$ ๋ชจ๋ unit์ผ ๋)
์ด๊ฒ์ ๊ฒฐ๊ตญ $\left< p \right>$๋ณด๋ค ํฌ๋ค๊ณ ๊ฐ์ ํ ideal $\left< a \right>$์ด $D$ ์์ฒด๊ฐ ๋๊ฑฐ๋ $\left< p \right>$ ์์ ์ด ๋๋ค๋ ๋ง์ด๊ธฐ ๋๋ฌธ์ $\left< p \right>$๊ฐ Maximal Ideal์์ ์๋ฏธํ๋ค. $\blacksquare$
Irreducible ~ Prime
Theorem 27.27
Let $p(x)$ be an irreducible polynomial in $F[x]$.
If $p(x)$ divides $r(x)s(x)$ for $r(x), s(x) \in F[x]$,
then either $p(x) \mid r(x)$ or $p(x) \mid s(x)$.
Lemma 45.13 (Generalization of Thm 27.27)
In a PID, if an irreducible $p$ divides $ab$,
then either $p \mid a$ or $p \mid b$.
proof.
Let $D$ be a PID, and Supp. that for an irreducible $p \in D$ we have $p \mid ab$.
Then $(ab) \in \left< p \right>$.
๋ํ ์์์ โLemma 45.12โ์์ PID์ irreducible elt๋ maxial ideal์ ์์ฑํจ์ ํ์ธํ๋ค.
Since every maximal ideal in PID is a prime ideal by โCorollary 27.16โ,
$(ab) \in \left< p \right>$ implies that either $a \in \left< p \right>$ or $b \in \left< p \right>$.
๊ทธ๋ฆฌ๊ณ ์ด๊ฒ์ either $p \mid a$ or $p \mid b$๋ฅผ ์ ๋ํ๋ค. $\blacksquare$
Corollary 45.14 (Generalization of Lemma 45.13)
If $p$ is an irreducible in a PID and $p \mid a_1 a_2 \cdots a_n$ for $a_i \in D$.
Then $p \mid a_i$ for at least one $i$.
์ฌ์ค ์์์ ์ธ๊ธํ ์ฑ์ง์ โPrimalityโ์ ๋ํ ๊ฒ์ด๋ค.
์ฆ, PID์ irreducible์ด prime์ ์ ๋ํ๋ค๋ ๋ช ์ ๊ฐ โLemma 45.13โ์ด๋ค.
Example 45.16
Let $F$ be a Field, and $D$ be the sub-domain $F[x^3, xy, y^3]$ of $F[x, y]$.
Then $x^3$, $xy$, $y^3$ are irreducible in $D$, but
\[(x^3)(y^3) = (xy)(xy)(xy)\]Since $xy$ divides $x^3y^3$ but not $x^3$ or $y^3$,
$xy$ is not a prime.
In similar way, neither $x^3$ nor $y^3$ is a prime.
์ ์์ ๋ Integral Domain์์๋ irreducible์ด prime์ ์๋ฏธํ์ง ์์ ์๋ ์๋ค๋ ๊ฒ์ ๋ณด์ฌ์ค๋ค!
์ด์ ์ฐ๋ฆฌ๊ฐ ๋ชฉํ๋ก ํ๋ ์ ๋ฆฌ, โThm 23.20โ์ ์ผ๋ฐํํ ๋ช ์ ๋ฅผ ์ดํด๋ณด์!!
Theorem 45.17 (Generalization of Thm 23.20)
Every PID is a UFD.
proof.
Thm 45.11 shows that if $D$ is a PID, then each non-zero & non-unit $a \in D$ has a factorization into irreducibles. (1st Condition)
\[a = p_1 p_2 \cdots p_r\]์ด์ ๋จ์ ๊ฒ์ ์์ irreducible factorization์ ๋ํ โ์ ์ผ์ฑโ์ ๋ณด์ด๋ ๊ฒ์ด๋ค.
Let $a = q_1 q_2 \cdots q_s$ be another irreucible factorization.
์์ ๊ฐ์ด ๋๋ค๋ฅธ irreducible factorization์ ๊ฐ์ ํ๋ค๋ฉด,
\[p_1 \mid (q_1 q_2 \cdots q_s)\]๊ฐ ๋๋ฉฐ, ์ด๊ฒ์ $p_1 \mid q_j$ for some $j$๋ฅผ ์๋ฏธํ๋ค. (Cor 45.14)
$q_j$์ ์์๋ฅผ ์ ๋นํ ๋ฐ๊ฟ์ผ๋ก์จ ์ฐ๋ฆฌ๋ $j=1$๋ผ๊ณ ๊ฐ์ ํ ์ ์๊ณ , ๋ฐ๋ผ์ $p_1 \mid q_1$๊ฐ ๋๋ค.
๊ทธ๋ฌ๋ฉด, $q_1 = p_1 u_1$ for some unit $u_1$.
๋ฐ๋ผ์ irreducible factorization์ ์๋์ ๊ฐ์ด ๋ค์ ์ธ ์ ์๋ค.
\[p_1 p_2 \cdots p_r = p_1 u_1 q_2 \cdots q_s\]Integral Domain $D$ ์๋์์์ ์๊ฑฐ๋ฒ์ ์ํด
\[p_2 \cdots p_r = u_1 q_2 \cdots q_s\]๊ฐ ๋๋ค.
์ด ๊ณผ์ ์ ๋ฐ๋ณตํ๋ฉด, ์๋์ ๊ฒฐ๊ณผ๋ฅผ ์ป๋๋ค.
\[1 = u_1 u_2 \cdots u_r \cdot q_{r+1} \cdots q_s\]๊ฐ์ ์ ์ํด $q_j$๋ ๋ชจ๋ irreducible์ด๋ฏ๋ก ์์ ๋ฑ์์ด ๋ง์กฑํ๊ธฐ ์ํด์ $r=s$๊ฐ ๋์ด์ผ ํ๋ค.
์ข ํฉํ๋ฉด PID ์๋์์ ๋ชจ๋ non-zero & non-unit elt๋ ๋ชจ๋ unique irreducible factorization์ ๊ฐ๋๋ค.
๊ทธ๋ฆฌ๊ณ Lemma 45.13์ ์ํด PID์์ irreducible์ด prime์ด๊ธฐ ๋๋ฌธ์ PID์ ์์๋ unique prime factorization์ ๊ฐ์ง๋ค.
๋ฐ๋ผ์ PID๋ UFD์ด๋ค. $\blacksquare$
PID๊ฐ UFD์์ ๋งํ๋ Theorem 45.17๋ฅผ ํตํด ์ฐ๋ฆฌ๋ ์ ์ $\mathbb{Z}$์ ๋ํ ๊ฐ์ฅ ๊ทผ๋ณธ์ ์ธ ๋ช ์ ์ธ โFundamental Theorem of Arithmeticโ์ ์ ๋ํ ์ ์๋ค!! link