2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

3 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


μ•žμ—μ„œ 닀룬 Gaussian Integer와 Multiplicative Normμ—μ„œμ˜ ν˜„μƒμ„ 잘 μ΄μš©ν•˜λ©΄, β€œνŽ˜λ₯΄λ§ˆμ˜ 두 제곱수 정리”λ₯Ό 증λͺ…ν•  수 μžˆλ‹€!!




Theorem 47.10 Fermat’s $p=a^2+b^2$ Theorem

Let $p \ne 2$ be a prime in $\mathbb{Z}$.

Then $p = a^2 + b^2$ for $a, b \in \mathbb{Z}$

$\iff$ $p \equiv 1$ (mod $4$).


proof.

($\implies$)

First, Supp. that $p = a^2 + b^2$.

Now $a$ and $b$ cannot both be even or both be odd since $p$ is an odd number.

If $a = 2r$ and $b = 2s + 1$,

then $a^2 + b^2 = 4 r^2 + 4(s^2+s)+1$.

So $p \equiv 1$ (mod $4$).

($\impliedby$)

Supp. that $p \equiv 1$ (mod $4$).

finite field $\mathbb{Z}_p$의 multiplicative group을 μƒκ°ν•΄λ³΄μž.

그러면, $({\mathbb{Z}_p}^{*}, \times)$λŠ” order $p-1$의 cyclic group이닀.

μ΄λ•Œ $p \equiv 1$ (mod $4$)에 μ˜ν•΄ $4$λŠ” $p-1$의 divisorμž„μ΄ μœ λ„λœλ‹€.

λ”°λΌμ„œ ${\mathbb{Z}_p}^{*}$λŠ” multiplicative orderκ°€ $4$인 μ›μ†Œ $n$을 ν¬ν•¨ν•œλ‹€. (cyclic group의 경우 Lagrange thm의 역이 성립)

그리고 $n^2$λŠ” multiplicative order $2$λ₯Ό 가진닀.
(κ°„λ‹¨ν•˜κ²Œ μƒκ°ν•˜λ©΄, $n$이 λ›°λŠ” μŠ€ν…μ„ 절반만 λ›°κΈ° λ•Œλ¬Έμ— $4/2=2$의 μœ„μˆ˜λ₯Ό κ°–λŠ” 것)
(addidtive groupμ—μ„œ $n$κ³Ό $2n$의 μœ„μˆ˜μ™€ μƒν†΅ν•˜λŠ” λΆ€λΆ„)

λ”°λΌμ„œ $n^2$의 μœ„μˆ˜κ°€ 2μ΄λ―€λ‘œ ${\mathbb{Z}_p}^{*}$μ—μ„œ $n^2 = -1$이 λœλ‹€.

λ”°λΌμ„œ $\mathbb{Z}$에선 $n^2 \equiv -1$ (mod $p$)κ°€ λœλ‹€.

즉, $\mathbb{Z}$μ—μ„œ $p \mid (n^2 + 1)$κ°€ λœλ‹€.


$p$와 $n^2 + 1$의 관계λ₯Ό μ΄λ²ˆμ—” $\mathbb{Z}[i]$μ—μ„œ 바라보면 μ•„λž˜μ™€ κ°™λ‹€.

\[\begin{aligned} p &\mid (n^2 + 1) \\ p &\mid (n+i)(n-i) \end{aligned}\]

Supp. $p$ is irreducible in $\mathbb{Z}[i]$, (κ·€λ₯˜λ²•)

then $p$ would have to divide $n+i$ or $n-i$.

If $p$ divides $n+i$, then $n+i = p(a+bi)$ for some $a, b \in \mathbb{Z}$.

ν—ˆμˆ˜λΆ€μ˜ κ³„μˆ˜λ§Œ λΉ„κ΅ν•˜λ©΄, $1 = pb$λΌλŠ” 식을 μ–»λŠ”λ° 이것은 λΆˆκ°€λŠ₯ν•˜λ‹€!

λ§ˆμ°¬κ°€μ§€λ‘œ $n-i$에 λŒ€ν•΄μ„œλ„ λΆˆκ°€λŠ₯ν•˜λ‹€λŠ” κ²°κ³Όλ₯Ό μ–»λŠ”λ‹€.

λ”°λΌμ„œ μ²˜μŒμ— κ°€μ •ν•œ β€œ$p$ is irreducible”은 거짓이닀!


$p$κ°€ $\mathbb{Z}[i]$μ—μ„œ irreducible이 μ•„λ‹ˆλ―€λ‘œ, $p = (a+bi)(c+di)$κ°€ λœλ‹€. ($(a+bi)$, $(c+di)$ λͺ¨λ‘ unit이 μ•„λ‹˜!)

μ—¬κΈ°μ„œ norm을 μ·¨ν•˜λ©΄, $p^2 = (a^2 + b^2)(c^2 + d^2)$ where neither $a^2 + b^2 = 1$ nor $c^2 + d^2 = 1$.

μ΄λ•Œ, $a^2 + b^2$κ°€ $(a+bi)(a-bi)$둜 factorization λ˜λ―€λ‘œ, $p = a^2 + b^2$κ°€ λ˜μ–΄ μ„±λ¦½ν•œλ‹€. $\blacksquare$
($p = (a+bi)(c+di) = a^2 + b^2$κ°€ λ˜λ―€λ‘œ μ•žμ˜ 쑰건을 λͺ¨λ‘ λ§Œμ‘±ν•œλ‹€!)