Fermatβs Theorem on Sums of Two Squares
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
μμμ λ€λ£¬ Gaussian Integerμ Multiplicative Normμμμ νμμ μ μ΄μ©νλ©΄, βνλ₯΄λ§μ λ μ κ³±μ μ 리βλ₯Ό μ¦λͺ ν μ μλ€!!
Theorem 47.10 Fermatβs $p=a^2+b^2$ Theorem
Let $p \ne 2$ be a prime in $\mathbb{Z}$.
Then $p = a^2 + b^2$ for $a, b \in \mathbb{Z}$
$\iff$ $p \equiv 1$ (mod $4$).
proof.
($\implies$)
First, Supp. that $p = a^2 + b^2$.
Now $a$ and $b$ cannot both be even or both be odd since $p$ is an odd number.
If $a = 2r$ and $b = 2s + 1$,
then $a^2 + b^2 = 4 r^2 + 4(s^2+s)+1$.
So $p \equiv 1$ (mod $4$).
($\impliedby$)
Supp. that $p \equiv 1$ (mod $4$).
finite field $\mathbb{Z}_p$μ multiplicative groupμ μκ°ν΄λ³΄μ.
κ·Έλ¬λ©΄, $({\mathbb{Z}_p}^{*}, \times)$λ order $p-1$μ cyclic groupμ΄λ€.
μ΄λ $p \equiv 1$ (mod $4$)μ μν΄ $4$λ $p-1$μ divisorμμ΄ μ λλλ€.
λ°λΌμ ${\mathbb{Z}_p}^{*}$λ multiplicative orderκ° $4$μΈ μμ $n$μ ν¬ν¨νλ€. (cyclic groupμ κ²½μ° Lagrange thmμ μμ΄ μ±λ¦½)
κ·Έλ¦¬κ³ $n^2$λ multiplicative order $2$λ₯Ό κ°μ§λ€.
(κ°λ¨νκ² μκ°νλ©΄, $n$μ΄ λ°λ μ€ν
μ μ λ°λ§ λ°κΈ° λλ¬Έμ $4/2=2$μ μμλ₯Ό κ°λ κ²)
(addidtive groupμμ $n$κ³Ό $2n$μ μμμ μν΅νλ λΆλΆ)
λ°λΌμ $n^2$μ μμκ° 2μ΄λ―λ‘ ${\mathbb{Z}_p}^{*}$μμ $n^2 = -1$μ΄ λλ€.
λ°λΌμ $\mathbb{Z}$μμ $n^2 \equiv -1$ (mod $p$)κ° λλ€.
μ¦, $\mathbb{Z}$μμ $p \mid (n^2 + 1)$κ° λλ€.
$p$μ $n^2 + 1$μ κ΄κ³λ₯Ό μ΄λ²μ $\mathbb{Z}[i]$μμ λ°λΌλ³΄λ©΄ μλμ κ°λ€.
\[\begin{aligned} p &\mid (n^2 + 1) \\ p &\mid (n+i)(n-i) \end{aligned}\]Supp. $p$ is irreducible in $\mathbb{Z}[i]$, (κ·λ₯λ²)
then $p$ would have to divide $n+i$ or $n-i$.
If $p$ divides $n+i$, then $n+i = p(a+bi)$ for some $a, b \in \mathbb{Z}$.
νμλΆμ κ³μλ§ λΉκ΅νλ©΄, $1 = pb$λΌλ μμ μ»λλ° μ΄κ²μ λΆκ°λ₯νλ€!
λ§μ°¬κ°μ§λ‘ $n-i$μ λν΄μλ λΆκ°λ₯νλ€λ κ²°κ³Όλ₯Ό μ»λλ€.
λ°λΌμ μ²μμ κ°μ ν β$p$ is irreducibleβμ κ±°μ§μ΄λ€!
$p$κ° $\mathbb{Z}[i]$μμ irreducibleμ΄ μλλ―λ‘, $p = (a+bi)(c+di)$κ° λλ€. ($(a+bi)$, $(c+di)$ λͺ¨λ unitμ΄ μλ!)
μ¬κΈ°μ normμ μ·¨νλ©΄, $p^2 = (a^2 + b^2)(c^2 + d^2)$ where neither $a^2 + b^2 = 1$ nor $c^2 + d^2 = 1$.
μ΄λ, $a^2 + b^2$κ° $(a+bi)(a-bi)$λ‘ factorization λλ―λ‘, $p = a^2 + b^2$κ° λμ΄ μ±λ¦½νλ€. $\blacksquare$
($p = (a+bi)(c+di) = a^2 + b^2$κ° λλ―λ‘ μμ 쑰건μ λͺ¨λ λ§μ‘±νλ€!)