โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

4 minute read

โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

Set-up


Definition. Experimenet

any process that generates a set of data.


Definition. Sample Space $S$

The set of all possible outcomes of a statistical experiments.

Each outcome in a sample space $S$ is called a <sample point>.


Definition. Event

Any subset of sample space.

ex: event $A$ that {the outcome when a die is tossed is divisible by 3}.

<Event>๋ฅผ ์ •์˜ํ•จ์œผ๋กœ์จ ์šฐ๋ฆฌ๋Š” outcome ์ „์ฒด๊ฐ€ ์•„๋‹Œ ๊ด€์‹ฌ ์žˆ๋Š” ์ผ๋ถ€ outcome์˜ ์ง‘ํ•ฉ์„ ํŠน์ •ํ•˜๊ฒŒ ๋œ๋‹ค. ๋‚˜์•„๊ฐ€ Event๋Š” ์ผ์ข…์˜ ์ง‘ํ•ฉ์ด๊ธฐ ๋•Œ๋ฌธ์— ์ง‘ํ•ฉ์—์„œ ์“ฐ๋Š” ๋‹ค์–‘ํ•œ ์—ฐ์‚ฐ์ž๋“ค, $A^c$, $A \cap B$, $A \cup B$, $A \setminus B$ ๋“ฑ์„ ์‚ฌ์šฉํ•ด ๋” ๋‹ค์–‘ํ•œ Event ์ง‘ํ•ฉ๋“ค์„ ์‚ดํŽด๋ณผ ์ˆ˜๋„ ์žˆ๋‹ค!


Counting Sample Points

Sample Space์˜ ์›์†Œ์ธ Sample Points๋ฅผ ์„ธ๋Š” ๊ฒƒ์€ <ํ™•๋ฅ >์„ ์ •์˜ํ•˜๋Š” ๋ฐ์— ์ข‹์€ ์ ‘๊ทผ์ด๋‹ค! ์ด ๋ถ€๋ถ„์—์„  Sample Points๋ฅผ ์„ธ๋Š” ๊ทœ์น™๋“ค์— ๋Œ€ํ•ด์„œ ์†Œ๊ฐœํ•œ๋‹ค.


Rule. Product Rule

If an operation can be performed in $n_1$ ways, and if for each of these ways a second operation can be performed in $n_2$ ways, then the two operations can be performed together in $n_1 n_2$ ways.

<๊ณฑ์˜ ๊ทœ์น™ Product Rule>์„ ๊ฐ„๋‹จํ•˜๊ฒŒ ์ƒ๊ฐํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™์€ ๋ฌธ์ œ๋ผ๊ณ  ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค.


Rule. Inclusion-Exclusion Principle

<ํฌํ•จ-๋ฐฐ์ œ ์›๋ฆฌ>๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š” ์ด ๊ธฐ๋ฒ•์€ ์œ ํ•œ ์ง‘ํ•ฉ ์‚ฌ์ด์˜ ํ•ฉ์ง‘ํ•ฉ์˜ ์›์†Œ์˜ ๊ฐฏ์ˆ˜๋ฅผ ์„ธ๋Š” ๊ธฐ๋ฒ•์ด๋‹ค. ๋‹ค๋ฅด๊ฒŒ ๋งํ•˜๋ฉด, ๊ฒฝ์šฐ์˜ ์ˆ˜๋ฅผ ์„ธ๋Š” ๋ฌธ์ œ์—์„œ <ํ•ฉ์˜ ๊ทœ์น™ Additive Rule>์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค.

\[\left| A \cup B \right| = \left| A \right| + \left| B \right| - \left| A \cap B \right|\]

Permutation

์•ž์—์„œ ์‚ดํŽด๋ณธ <Product Rule>์€ $n_1$, $n_2$ ๋‘ ๊ฐ€์ง€ ๊ฒฝ์šฐ์— ๋Œ€ํ•œ ๊ฒฝ์šฐ์˜ ์ˆ˜๋ฅผ ์„ธ๋Š” ๊ทœ์น™์ด์—ˆ๋‹ค. ๋งŒ์•ฝ ์ด๊ฒƒ์„ $k$๊ฐœ ๋งŒํผ์˜ ๊ฐ€์ง“์ˆ˜๋กœ ํ™•์žฅํ•˜๋ฉด, <Generalized Product Rule>์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.

<์ˆœ์—ด Permutation>์€ ์ด <Generalized Product Rule>์„ ํ†ตํ•ด ์–ป๋Š” ๊ฒฐ๊ณผ ์ค‘ ํ•˜๋‚˜๋‹ค.


Definition. Permutation

A <Permutation> is an arrangement of all or part of a set of objects.

$n$๊ฐœ ์›์†Œ์˜ ์ง‘ํ•ฉ ๋‚ด์—์„œ ์šฐ๋ฆฌ๋Š” $n$๊ฐœ ์›์†Œ์˜ arrangement๋ฅผ ์ƒ๊ฐํ•  ์ˆ˜๋„ ์žˆ์ง€๋งŒ, $r \le n$๊ฐœ ์›์†Œ์˜ arrangement๋ฅผ ์ƒ๊ฐํ•ด๋ณผ ์ˆ˜๋„ ์žˆ๋‹ค.

์ด๊ฒƒ์„ ์ž˜ ์ •๋ฆฌํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.


Theorem. Permutation $_nP_r$

The number of permutations of $n$ distinct objects taken $r$ at a time is

\[_nP_r = \frac{n!}{(n-r)!}\]


Theorem. circular permutation

<circular permutation>์ด๋ผ๋Š” ์žฌ๋ฐŒ๋Š” ์ƒํ™ฉ๋„ ์žˆ๋Š”๋ฐ, ์ด๋ฒˆ์—” $n$๊ฐœ ์›์†Œ๋ฅผ ์›ํ˜•์œผ๋กœ ๋ฐฐ์—ดํ•˜๋Š” ๊ฐ€์ง“์ˆ˜๋ฅผ ๋งํ•œ๋‹ค. ์ด ๊ฒฝ์šฐ, ์›์ด ํ•œ์นธ์”ฉ ํšŒ์ „ํ•ด๋„ ๋™์ผํ•œ ์›ํ˜• ๋ฐฐ์—ด์ด๊ธฐ ๋•Œ๋ฌธ์— ์ „์ฒด ๊ฐ€์ง“์ˆ˜์—์„œ $n$๋ฒˆ ๋งŒํผ์˜ ๋ฐ˜๋ณต์„ ์ œ์™ธ์‹œ์ผœ์•ผ ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ $(n-1)!$ ๋งŒํผ์˜ ๊ฒฝ์šฐ์˜ ์ˆ˜๊ฐ€ ์กด์žฌํ•œ๋‹ค.


Combination

<์กฐํ•ฉ Combination>์€ โ€œ์ˆœ์„œโ€๋ฅผ ๋ฌด์‹œํ•˜๊ณ  ๊ฒฝ์šฐ์˜ ์ˆ˜๋ฅผ ์…€ ๋•Œ ์‚ฌ์šฉํ•˜๋Š” ์ ‘๊ทผ์ด๋‹ค.


Theorem. Combination $_nC_r$

The number of combinations of $n$ distinct objects taken $r$ at a time is

\[_nC_r = {n \choose k} = \frac{n!}{r!(n-r)!}\]


Theorem. Pascalโ€™s Triangle

<ํŒŒ์Šค์นผ์˜ ์‚ผ๊ฐํ˜• Pascalโ€™s Triangle>์ด๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š” ์ด ๊ณต์‹์€ <์กฐํ•ฉ>์—์„œ ์•„๋ž˜์™€ ๊ฐ™์€ ์‹์ด ์„ฑ๋ฆฝํ•จ์„ ๊ธฐ์ˆ ํ•œ๋‹ค.

\[{n \choose k} = {n-1 \choose k-1} + {n-1 \choose k}\]

์ฆ๋ช…์€ ์ƒ๊ฐ๋ณด๋‹ค ๊ฐ„๋‹จํ•œ๋ฐ, $n$ ์›์†Œ ์ค‘์— ํŠน์ • ์›์†Œ $a$๋ฅผ ๋ฏธ๋ฆฌ ๋ฝ‘์•˜๋Š๋ƒ ์•ˆ ๋ฝ‘์•˜๋Š๋ƒ๋กœ ๊ฐ€์ง“์ˆ˜๋ฅผ ๋‚˜๋ˆ„์–ด ์œ ๋„ํ•˜๋ฉด ๋œ๋‹ค.

  • $a$๋ฅผ ์ด๋ฏธ ์„ ํƒํ•œ ๊ฒฝ์šฐ, ๋‚จ์€ $n-1$๊ฐœ ์›์†Œ ์ค‘ $k-1$๊ฐœ๋ฅผ ์„ ํƒํ•˜๋ฉด ๋œ๋‹ค.
\[{n-1 \choose k-1}\]
  • $a$๋ฅผ ๋ฐฐ์ œํ•˜๊ณ  ์„ ํƒํ•˜๋Š” ๊ฒฝ์šฐ, ๋‚จ์€ $n-1$๊ฐœ ์›์†Œ ์ค‘ $k$๊ฐœ๋ฅผ ์„ ํƒํ•˜๋ฉด ๋œ๋‹ค.
\[{n-1 \choose k}\]

๋ณธ์ธ์˜ ๊ฒฝ์šฐ, ์‹์—์„œ $n-1$ ๋ถ€๋ถ„์ด ๊ณตํ†ต๋˜๋Š” ๊ฑธ ๋ณด๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์œ„์˜ ์•„์ด๋””์–ด๋ฅผ ๋– ์˜ฌ๋ ธ๋‹ค.