Sample Space
βνλ₯ κ³Ό ν΅κ³(MATH230)β μμ μμ λ°°μ΄ κ²κ³Ό 곡λΆν κ²μ μ 리ν ν¬μ€νΈμ λλ€. μ 체 ν¬μ€νΈλ Probability and Statisticsμμ νμΈνμ€ μ μμ΅λλ€ π²
Set-up
Definition. Experimenet
any process that generates a set of data.
Definition. Sample Space $S$
The set of all possible outcomes of a statistical experiments.
Each outcome in a sample space $S$ is called a <sample point>.
Definition. Event
Any subset of sample space.
ex: event $A$ that {the outcome when a die is tossed is divisible by 3}.
<Event>λ₯Ό μ μν¨μΌλ‘μ¨ μ°λ¦¬λ outcome μ μ²΄κ° μλ κ΄μ¬ μλ μΌλΆ outcomeμ μ§ν©μ νΉμ νκ² λλ€. λμκ° Eventλ μΌμ’ μ μ§ν©μ΄κΈ° λλ¬Έμ μ§ν©μμ μ°λ λ€μν μ°μ°μλ€, $A^c$, $A \cap B$, $A \cup B$, $A \setminus B$ λ±μ μ¬μ©ν΄ λ λ€μν Event μ§ν©λ€μ μ΄ν΄λ³Ό μλ μλ€!
Counting Sample Points
Sample Spaceμ μμμΈ Sample Pointsλ₯Ό μΈλ κ²μ <νλ₯ >μ μ μνλ λ°μ μ’μ μ κ·Όμ΄λ€! μ΄ λΆλΆμμ Sample Pointsλ₯Ό μΈλ κ·μΉλ€μ λν΄μ μκ°νλ€.
Rule. Product Rule
If an operation can be performed in $n_1$ ways, and if for each of these ways a second operation can be performed in $n_2$ ways, then the two operations can be performed together in $n_1 n_2$ ways.
<κ³±μ κ·μΉ Product Rule>μ κ°λ¨νκ² μκ°νλ©΄ μλμ κ°μ λ¬Έμ λΌκ³ μκ°ν μ μλ€.
Rule. Inclusion-Exclusion Principle
<ν¬ν¨-λ°°μ μ리>λΌκ³ λΆλ¦¬λ μ΄ κΈ°λ²μ μ ν μ§ν© μ¬μ΄μ ν©μ§ν©μ μμμ κ°―μλ₯Ό μΈλ κΈ°λ²μ΄λ€. λ€λ₯΄κ² λ§νλ©΄, κ²½μ°μ μλ₯Ό μΈλ λ¬Έμ μμ <ν©μ κ·μΉ Additive Rule>μ΄λΌκ³ ν μ μλ€.
\[\left| A \cup B \right| = \left| A \right| + \left| B \right| - \left| A \cap B \right|\]Permutation
μμμ μ΄ν΄λ³Έ <Product Rule>μ $n_1$, $n_2$ λ κ°μ§ κ²½μ°μ λν κ²½μ°μ μλ₯Ό μΈλ κ·μΉμ΄μλ€. λ§μ½ μ΄κ²μ $k$κ° λ§νΌμ κ°μ§μλ‘ νμ₯νλ©΄, <Generalized Product Rule>μ μ»μ μ μλ€.
<μμ΄ Permutation>μ μ΄ <Generalized Product Rule>μ ν΅ν΄ μ»λ κ²°κ³Ό μ€ νλλ€.
Definition. Permutation
A <Permutation> is an arrangement of all or part of a set of objects.
$n$κ° μμμ μ§ν© λ΄μμ μ°λ¦¬λ $n$κ° μμμ arrangementλ₯Ό μκ°ν μλ μμ§λ§, $r \le n$κ° μμμ arrangementλ₯Ό μκ°ν΄λ³Ό μλ μλ€.
μ΄κ²μ μ μ 리νλ©΄ μλμ κ°λ€.
Theorem. Permutation $_nP_r$
The number of permutations of $n$ distinct objects taken $r$ at a time is
\[_nP_r = \frac{n!}{(n-r)!}\]
Theorem. circular permutation
<circular permutation>μ΄λΌλ μ¬λ°λ μν©λ μλλ°, μ΄λ²μ $n$κ° μμλ₯Ό μνμΌλ‘ λ°°μ΄νλ κ°μ§μλ₯Ό λ§νλ€. μ΄ κ²½μ°, μμ΄ νμΉΈμ© νμ ν΄λ λμΌν μν λ°°μ΄μ΄κΈ° λλ¬Έμ μ 체 κ°μ§μμμ $n$λ² λ§νΌμ λ°λ³΅μ μ μΈμμΌμΌ νλ€. λ°λΌμ $(n-1)!$ λ§νΌμ κ²½μ°μ μκ° μ‘΄μ¬νλ€.
Combination
<μ‘°ν© Combination>μ βμμβλ₯Ό 무μνκ³ κ²½μ°μ μλ₯Ό μ λ μ¬μ©νλ μ κ·Όμ΄λ€.
Theorem. Combination $_nC_r$
The number of combinations of $n$ distinct objects taken $r$ at a time is
\[_nC_r = {n \choose k} = \frac{n!}{r!(n-r)!}\]
Theorem. Pascalβs Triangle
<νμ€μΉΌμ μΌκ°ν Pascalβs Triangle>μ΄λΌκ³ λΆλ¦¬λ μ΄ κ³΅μμ <μ‘°ν©>μμ μλμ κ°μ μμ΄ μ±λ¦½ν¨μ κΈ°μ νλ€.
\[{n \choose k} = {n-1 \choose k-1} + {n-1 \choose k}\]μ¦λͺ μ μκ°λ³΄λ€ κ°λ¨νλ°, $n$ μμ μ€μ νΉμ μμ $a$λ₯Ό 미리 λ½μλλ μ λ½μλλλ‘ κ°μ§μλ₯Ό λλμ΄ μ λνλ©΄ λλ€.
- $a$λ₯Ό μ΄λ―Έ μ νν κ²½μ°, λ¨μ $n-1$κ° μμ μ€ $k-1$κ°λ₯Ό μ ννλ©΄ λλ€.
- $a$λ₯Ό λ°°μ νκ³ μ ννλ κ²½μ°, λ¨μ $n-1$κ° μμ μ€ $k$κ°λ₯Ό μ ννλ©΄ λλ€.
λ³ΈμΈμ κ²½μ°, μμμ $n-1$ λΆλΆμ΄ 곡ν΅λλ κ±Έ λ³΄κ³ , μ΄λ₯Ό ν΅ν΄ μμ μμ΄λμ΄λ₯Ό λ μ¬λ Έλ€.