Probability and Statistics
2021-1ํ๊ธฐ์ ์๊ฐํ POSTECH ๊น๊ฑด์ฐ ๊ต์๋์ โํ๋ฅ ๊ณผ ํต๊ณ(MATH230)โ ์์ ์์ ๋ฐฐ์ด ๊ฒ๊ณผ ๊ณต๋ถํ ๊ฒ์ ์ ๋ฆฌํ ์งํฌ ๋ธ๋ก๊ทธ์ ๋๋ค. ํ์ค์ ์ ๋นํ ํ๋ฅ ๋ถํฌ๋ก ๋ชจ๋ธ๋ง ํ๊ณ , ๋ ํ๋ฅ ์ ๊ธฐ๋ฐ์ผ๋ก ๊ฒ์ ์ ์งํํด ์์ฌ ๊ฒฐ์ ์ ์ํํ๋ ์ ๊ทผ๋ฒ์ ๋ฐฐ์ธ ์ ์์์ต๋๋ค ๐
Probability Theory
- Sample Space
- Sample Space & Event
- Permutation & Combination
- Probability of an Event
- Probability
- Conditional Probability
- Independent Events
- Bayesโ Rule
- Law of Total Probability
- Meaning of Bayes Rule
- Monti Hall Problem1
- Random Variables and Probability Distributionss
- Random Variable $X$
- Probability Distributions
- PMF $f(x)$ & CDF $F(x)$ for Discrete RV
- PDF $f(x)$ & CDF $F(x)$ for Continuous RV
- Joint Probability Distribution
- Mean, Variance and Covariance
- Chebyshevโs Inequality
- Discrete Probability Distribution - 1
- (Discrete) Uniform Distribution
- Bernoulli Distribution
- Binomial Distribution
- Multinomial Distribution
- Discrete Probability Distribution - 2
- HyperGeometric Distribution
- Multivariate HyperGeometric Distribution
- Geometric Distribution
- Negative Binomial Distribution
- HyperGeometric Distribution
- Poisson Distribution
- Law of Rare Events
- Bernoulli Process & Poisson Process
- Continuous Probability Distribution
- Transformations of Random Variable - 1
- Transformations of Random Variable - 2
- Momemtum Generating Function
Statistics
- Sampling Distribution
- statistic; ํต๊ณ๋
- sample distribution
- statistic; ํต๊ณ๋
- Sampling Distribution of Mean
- WLLN; Weak Law of Large Numbers
- CLT; Central Limit Theorem
- proof
- Sampling Distribution of Variance
- Studentโs t-distribution
- Population Variance $\sigma^2$ is unknown
- F-distribution
- EDF and Quantile
- Point Estimation
- unbiased estimator: $E(\hat{\Theta}) = \theta$
- variance of estimator: $\text{Var}(\hat{\Theta})$
- the most efficient estimator
- Mean Squared Error of estimator
- Interval Estimation
- z-value: Estimate $\mu$ when $\sigma^2$ is known
- t-value: Estimate $\mu$ when $\sigma^2$ is unknown
- Prediction & Tolerance Estimation
- Two Samples Estimation: Diff Btw Two Means
- Two Samples Estimation: Paired Observations
- Proportion Estimation
- Single Sample Estimation: Proportion Estimation
- Two Samples Estimation: Diff Btw Two Proportions
- Variance Estimation
- Single Sample Estimation: Variance Estimation
- Two Samples Estimation: The ratio of two variances
- Maximum Likelihood Estimation
- Introduction to Hypothesis Tests
- Null Hypothetsis $H_0$ & Alternative Hypothesis $H_1$
- Test Statistic
- Rejection Region or Critical Region; $X \ge C$
- Critical Value; $C$
- Type 1 Error & Type 2 Error
- Sample Mean Test
- Choice of Sample Size for Testing Mean
- Proportion Test
- Variance Test
- Chi-square Goodness-of-fit Test
- Chi-square-Test; ์นด์ด์ ๊ณฑ-๊ฒ์
- Test on Independence
- Test on Homogeneity
- Introduction to Linear Regression
- Simple Linear Regression
- Least Square Method
- unbiased regression coefficients
- R-square $R^2$; ๊ฒฐ์ ๊ณ์
- Test on Regression
- Distribution of Regression Coefficients $B_0$ and $B_1$
- Estimator of $\sigma^2$
- Prediction on Regression
- Estimate on Mean Response $\mu_{Y \mid x_0}$
- Prediction Interval
Problem Solving
Probability
(์ค๋น์ค์ ๋๋ค! ๐)
Statistics
- PS1
- sample variance $S^2$ is not the minimal variance estimator
- MSE(Mean Squared Error) is sum of variance and square of bias
- Compare $S^2$ and $\hat{S}^2$ using MSE
- PS2
- $\sum e_i = 0$
- $\sum x_i e_i = 0$
- $\text{SST} = \text{SSR} + \text{SSE}$
- PS3
- Variance of estimator $B_0$
- unbiased estimator of $\sigma^2$ is $s^2$
- (not yet) $s^2 \perp B_1$, and $s^2 \perp B_0$
- (not yet) the distribution of $s^2$
Eassays
Study Materials
- ใProbability & Statistics for Engineers & Scientistsใ WalpoleยทMyersยทMyersยทYe, 9th ed.
-
์ ๊ท์์ ๋ด์ฉ์ ์๋์ง๋ง, ๊ต์๋๊ป์ ์์ ์๊ฐ์ ์ ๊น ์ธ๊ธํ์ จ์ต๋๋ค ๐ย ↩