Probability of an Event
โํ๋ฅ ๊ณผ ํต๊ณ(MATH230)โ ์์ ์์ ๋ฐฐ์ด ๊ฒ๊ณผ ๊ณต๋ถํ ๊ฒ์ ์ ๋ฆฌํ ํฌ์คํธ์ ๋๋ค. ์ ์ฒด ํฌ์คํธ๋ Probability and Statistics์์ ํ์ธํ์ค ์ ์์ต๋๋ค ๐ฒ
Probability
Definition. Probability of an event $A$; $P(A)$
Let $S$ be a sample space. The probability of an event $A$ is the sum of the probabilities of all sample points in $A$.
And there are following properties:
- $0 \le P(A) \le 1$ for every event $A$
- $P(S) = 1$
- If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$
- If $A_1$, $A_2$, โฆ is a sequence of mutually exclusive events, then $P(A_1 \cap A_2 \cap \cdots) = P(A_1) + P(A_2) + \cdots$
Term. Equally likely outcomes
<Equally likely outcomes> mean that each element in the sample space occurs with equal chance.
Under this circumstance, if $S = \{ x_1, \dots, x_N \}$ so that $\left| S \right| = N$, then we define $P(A) := \dfrac{\left| A \right|}{N}$.
Additive Rule
Theorem.
For any two events $A$ and $B$,
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
proof.
Exercise
// ๋ณธ์ธ์ โProbabilityโ๋ฅผ ๊ณ์ฐํ ๋, ๊ทธ event์ ์ํ sample point์ โProbabilityโ๋ฅผ ํฉํ๋ค๊ณ ์๊ฐํจ. ๊ทธ๋ฐ๋ฐ ๋ง์ฝ $P(A) + P(B)$๋ง ํ๊ฒ ๋๋ฉด, $A \cap B$์ ์ํ๋ sample point์ ํ๋ฅ ์ ์ค๋ณตํด์ ๋ํ๋ ๊ผด์ด ๋๊ธฐ ๋๋ฌธ์ ์ด๊ฒ์ ์ ์ธํด์ค์ผ ํ๋ค๊ณ ์๊ฐํจ.
Topic. Matching Problem
์ํ ์ํ์์ 3๋ช ์ ํ์๋ค์ด ์์ ๋ค์ด ์น ์ํ์ง๋ฅผ ์ฑ์ ํ๋ค๊ณ ํ๋ค. ์ ์์ ํ์๋ค์ด ์๊ธฐ ์์ ์ ์ํ์ง๋ฅผ ์ฑ์ ํ์ง๋ ์๋๋ก ํ๊ณ ์ถ๋ค. ๊ทธ ํ๋ฅ ์ ์ด๋ป๊ฒ ๋๋๊ฐ?
// ๋ณธ์ธ์ ์ฒ์ ๋ฌธ์ ๋ฅผ ํ์์ ๋, ํ๋ ธ์๋ค ใ ใ
Conditional Probability
Defitnition. Conditional Probability
The conditional probability of $B$, given $A$, denoted by $P(B \mid A)$, is defined by
\[P(B \mid A) = \frac{P(B \cap A)}{P(A)}, \quad \mbox{provided} \; P(A) > 0\]โThe notion of conditional probability provides the capability of reevaluating the idea of probability of an event in light of additional informationโ
The probability $P(A \mid B)$ is an updating of $P(A)$ based on the knowledge that event $B$ has occurred.
Independent Events
Definition. Independent
Two events $A$ and $B$ are independent if and only if
\[P(B \mid A) = P(B) \quad \mbox{or} \quad P(A \mid B) = P(A)\]assuming the existences of the conditional probabilities.
Otherwise, $A$ and $B$ are dependent.
If two events $A$ and $B$ are independent, then the occrurence of $B$ had no impact on the odds of occurrence of $A$.
Product Rule
Theorem.
If an experiment the events $A$ and $B$ can both occur, then
\[P(A \cap B) = P(A) P(B \mid A), \quad \mbox{providied} \; P(A) > 0\]Codntional Probability์ ํจ๊ป Product Rule์ ์๋ฏธ๋ฅผ ๊ณฑ์น์ด ๋ณด์.
$P(A \cap B)$๊ฐ $P(A)$์ $P(B \mid A)$์ ๊ณฑ์ผ๋ก ํํ๋๋ค๊ณ ํ๋ค. ์ฆ, โ$A$๊ฐ ๋ฐ์ํ ํ๋ฅ โ $P(A)$์ โ$A$๊ฐ ๋ฐ์ํ์ ๋, $B$๊ฐ ๋ฐ์ํ ํ๋ฅ $P(B \mid A)$โ๋ฅผ ๊ณฑํด์ฃผ๋ ๊ฑฐ๋ค.
๋ค์ ๋งํ๋ฉด, ๋ ์ฌ๊ฑด $A$, $B$์ ๋ํด, ๊ทธ ๋์ด ๋์์ ๋ฐ์ํ๋ ์ฌ๊ฑด $A \cap B$๋ฅผ $A$ ๋ฐ์ ํ $B$๊ฐ ๋ฐ์ํ ์ฌ๊ฑด์ผ๋ก ํด์ํ๋ ์ ์ด๋ค. ์ด๋, $A$๊ฐ ๋ฐ์ํ๋ค๋ฉด, ๊ทธ ์ ๋ณด๋ฅผ ์ฌ๊ฑด $B$ ๋ฐ์์ ๋ฐ์ํด์ผ ํ๊ธฐ ๋๋ฌธ์ $P(B \mid A)$๋ผ๋ conditional probability๋ฅผ ๋์ ํ ๊ฒ์ด๋ค.
Theorem.
Two events $A$ and $B$ are independent if and only if
\[P(A \cap B) = P(A) P(B)\]
Notation. $A \perp B$
When two events $A$ and $B$ are independent, we denote it as
\[A \perp B\]
Statements.
1. If $A \perp B$, then can $A \perp Bโ$?
2. If $A \perp B$, $B \perp C$, and $C \perp A$, then $A \perp (B \cap C)$?
3. If $A \perp B$ and $B \perp C$, then can $A \perp C$?
4. If $A \cap B = \emptyset$, then $A \perp B$?
5. If $A$ is independent of all, and also independent to $A$ itself. What can be $P(A)$?
์ ๋ต ๋ณด๊ธฐ
1. Yes. We know $P(A \cap B) + P(A \cap Bโ) = P(A)$, and $P(A \cap B) = P(A)P(B)$. ์ด ๋ ์์ ์ ์ ๋ฆฌํ๋ฉด, $P(A \cap Bโ) = P(A)P(Bโ)$๋ฅผ ์ป์ ์ ์๋ค!
2. No. ๋ฐ๋ก๋ฅผ ์ฐพ์ ์ ์๋ค. ์๋ฅผ ๋ค์ด ๋์ ๋๊ฐ๋ฅผ ๋์ ธ H/T๋ฅผ ๊ธฐ๋กํ๋ Sample Space๋ฅผ ์๊ฐํด๋ณด์. ๊ทธ๋ฆฌ๊ณ Event $A$, $B$, $C$๋ฅผ ์๋์ ๊ฐ์ด ์ ์ํ์.
\[A = \{HT, TH\} \quad B =\{HT, HH\}, \quad C = \{HT, TT\}\]ํ์ธ์ ํด๋ณด๋ฉด, $A$, $B$, $C$๋ pairwise independent ํ๋ค๋ ๊ฑธ ํ์ธํ ์ ์๋ค.
ํ์ง๋ง, $A$์ $B \cap C$๊ฐ independentํ์ง ํ์ธํด๋ณด์.
\[P(A \cap (B \cap C)) = \frac{1}{4} \ne P(A)P(B \cap C)\]์ฆ, $A$์ $B \cap C$๋ dependentํ๋ค! source
3. No. ์์ ์์์์ ์ฝ๊ฐ๋ง ๋ณํํ๋ฉด ์ฝ๊ฒ ๋ฐ๋ก๋ฅผ ์ฐพ์ ์ ์๋ค!!
\[A = \{HT, TH\} \quad B =\{HT, TT\}, \quad C = \{HH, TT\}\]ํ์ธ์ ํด๋ณด๋ฉด, $A \perp B$, $B \perp C$์ธ ๊ฒ์ ํ์ธํ ์ ์๋ค.
ํ์ง๋ง, $A \cap C = \emptyset$์ด๊ธฐ ๋๋ฌธ์ $P(A \cap C) \ne P(A)P(C)$์ด๋ค!
4. No. ๋ฐ๋ก๋ ๋๋ฌด ๊ฐ๋จํด์ ์๋ต
5. $P(A) = 1$ or $P(A) = 0$. ๊ฐ๋จํ ๋์์์ ํ๋ฉด ๋๋ค. โindependent to $A$ itselfโ๊ฐ ํํธ์ธ๋ฐ, $P(A \cap A) = P(A)P(A)$์ด๋ฏ๋ก
\[P(A \cap A) = P(A) = P(A)P(A)\]๋ฅผ ํ๋ฉด ๋๋ค. ํ๋ฅ ์ ์ ์์ ๋ฐ๋ผ $0 \le P(A) \le 1$์ด๋ฏ๋ก ่งฃ๋ $P(A) = 1$ or $P(A) = 0$์ด ๋๋ค.
์ด์ด์ง๋ ๋ด์ฉ์ ์ ๋ง์ ๋ง ์ค์ํ๊ณ , ์ ์ฉํ <๋ฒ ์ด์ฆ ๊ท์น Bayesโ Rule>์ด๋ค!!