๋“ค์–ด๊ฐ€๋ฉฐ

7 minute read

๋“ค์–ด๊ฐ€๋ฉฐ

<Rank-Nullity Theorem>์€ ์„ ํ˜• ๋Œ€์ˆ˜ํ•™์˜ ์ค‘์š”ํ•œ ์ •๋ฆฌ์ธ <Fundamental Theorem of Linear Algebra>์˜ ์ •๋ฆฌ ์ค‘ ํ•˜๋‚˜๋‹ค. ์ •๋ฆฌ์— ์„ ํ˜• ๋Œ€์ˆ˜์˜ ํ•ต์‹ฌ๊ณผ ์ •์ˆ˜๋ฅผ ๋‹ด๊ณ  ์žˆ๋‹ค.

Rank-Nullity Theorem์„ ๋ฐ”๋กœ ๋ณด๋Š” ๊ฑด ์•„๋‹ˆ๊ณ , ๋ช‡๊ฐ€์ง€ ์ค‘๊ฐ„ ์ •๋ฆฌ๋“ค์„ ๋จผ์ € ์‚ดํŽด๋ณด์ž. ์•„๋ž˜์— ์ œ์‹œ๋˜๋Š” ์ •๋ฆฌ๋“ค๋„ ์–ด๋–ค ์˜๋ฏธ๋ฅผ ๊ฐ–๋Š”์ง€ ์ดํ•ดํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค.

Column Rank = Row Rank

The row space $\mathcal{R}(A)$ and column space $\mathcal{C}(A)$ of a matrix $A$ have the same dimension.

\[\dim (\mathcal{C}(A)) = \dim (\mathcal{R}(A))\]

ํ–‰๋ ฌ $A$์—์„œ row์™€ column์€ ์ •๋ง ๋ณ„๊ฐœ์˜ ์กด์žฌ๋‹ค. ์•„๋ฌด ๊ด€๋ จ๋„ ์—†๋Š” ๋‘˜์ด ์‹ ๊ธฐํ•˜๊ฒŒ๋„ ํ–‰๊ณต๊ฐ„๊ณผ ์—ด๊ณต๊ฐ„์˜ ์ฐจ์›์ด ๊ฐ™๋‹ค๊ณ  ํ•œ๋‹ค!!

์ฆ๋ช…์„ 2๊ฐ€์ง€ ๋ฒ„์ „์œผ๋กœ ์ง„ํ–‰ํ•ด๋ณด๊ฒ ๋‹ค. ํ•˜๋‚˜๋Š” Elementary Row Operation์œผ๋กœ ์–ป์€ Row-Echelon Form์—์„œ ๊ด€์ฐฐํ•œ ํŠน์„ฑ์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•˜๊ณ , ํ•˜๋‚˜๋Š” Orthogonality๋ฅผ ์ด์šฉํ•œ๋‹ค.

Row-Echelon Form

ํ–‰๋ ฌ $A \in \mathbb{R}^{m\times n}$๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•˜์ž. ์ด ํ–‰๋ ฌ์€ $m$๊ฐœ ํ–‰๊ณผ $n$๊ฐœ ์—ด์„ ๊ฐ–๋Š”๋‹ค.

์ด ํ–‰๋ ฌ์„ Elementary Row Operation์„ ์ ์ ˆํžˆ ์ˆ˜ํ–‰ํ•ด Row Echelon Form(์ดํ•˜ REF)๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.

\[\left[ \begin{array}{ccccc} 1 & a_0 & a_1 & a_2 & a_3 \\ 0 & 0 & 2 & a_4 & a_5 \\ 0 & 0 & 0 & 1 & a_6 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]\]

์š”๋Ÿฐ $4 \times 5$ ํ–‰๋ ฌ์ด๋ผ๊ณ  ํ•˜๋ฉด, pivot 1, 2, 1์ด ์žˆ๋Š” ํ–‰์ด basis๋ฅผ ์ด๋ฃฌ๋‹ค.

์—ฌ๊ธฐ์—์„œ ์กฐ๊ธˆ๋งŒ ๋” Elementary Row Operation์„ ์ˆ˜ํ–‰ํ•˜๋ฉด, ๋” ์‹ฌํ”Œํ•ด์ง„ reduced ํ˜•ํƒœ์˜ REF๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.

\[\left[ \begin{array}{ccccc} 1 & a_0 & 0 & 0 & a_3 \\ 0 & 0 & 2 & 0 & a_5 \\ 0 & 0 & 0 & 1 & a_6 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]\]

์‚ฌ์‹ค pivot ์œ„์˜ ๊ฐ’๋“ค์ด ์—†์–ด์กŒ์„ ๋ฟ์ด๋‹ค ใ…‹ใ…‹ ์ด ์ƒํƒœ์—์„œ ํ–‰๋ ฌ์„ ์—ด๊ณต๊ฐ„์˜ ๊ด€์ ์œผ๋กœ ๋ณด๋ฉด, pivot์ด ์žˆ๋Š” ๊ทธ ์—ด์ด ๊ทธ๋Œ€๋กœ ์—ด๊ณต๊ฐ„์˜ basis๋ฅผ ์ด๋ฃฌ๋‹ค.

๋”ฐ๋ผ์„œ, ํ–‰๊ณต๊ฐ„๊ณผ ์—ด๊ณต๊ฐ„์˜ basis ๊ฐฏ์ˆ˜๊ฐ€ ๊ฐ™์œผ๋ฏ€๋กœ, ๋‘ ๊ณต๊ฐ„์˜ ์ฐจ์›(dimension)์ด ๊ฐ™๋‹ค. $\blacksquare$

Orthogonality

์ฆ๋ช…์„ ์‹œ์ž‘ํ•˜๊ธฐ ์ „์—, Wikipedia - Rank(linear algebra)์˜ ์ฆ๋ช…์„ ์ฐธ๊ณ ํ•˜๊ณ  ๋‹ค๋“ฌ์—ˆ์Œ์„ ๋ฐํžŒ๋‹ค.

ํ–‰๋ ฌ $A \in \mathbb{R}^{m\times n}$๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•˜์ž. ์ด ํ–‰๋ ฌ์€ $m$๊ฐœ ํ–‰๊ณผ $n$๊ฐœ ์—ด์„ ๊ฐ–๋Š”๋‹ค. ๊ทธ๋ฆฌ๊ณ  $r$์„ ํ–‰๊ณต๊ฐ„ $\mathcal{R}(A)$์˜ dimension์ด๋ผ๊ณ  ํ•˜์ž.

๊ทธ๋Ÿฌ๋ฉด, $r$๊ฐœ์˜ basis๋ฅผ $\mathcal{R}(A)$์—์„œ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_r \in \mathbb{R}^{n}$๋ผ๊ณ  ํ•˜์ž.

์šฐ๋ฆฌ๋Š” ํ–‰๋ ฌ $A$์— ํ–‰ basis๋ฅผ ๊ณฑํ•œ ๊ฒƒ๋“ค, $A \mathbf{x}_1, A \mathbf{x}_2, \dots, A \mathbf{x}_r \in \mathbb{R}^{m}$์ด ์„œ๋กœ ์ผ์ฐจ ๋…๋ฆฝ์ธ์ง€ ํ™•์ธํ•˜๊ณ ์ž ํ•œ๋‹ค.


์ด๋ฅผ ํ™•์ธํ•˜๊ณ ์ž $A \mathbf{x}_i$ ๋ฒกํ„ฐ๋“ค์„ ์ผ์ฐจ ๊ฒฐํ•ฉํ•œ ๊ฐ’์ด ์˜๋ฒกํ„ฐ๊ฐ€ ๋  ๋•Œ์˜ ๊ณ„์ˆ˜ $c_i$๊ฐ€ ์–ด๋–ป๊ฒŒ ๋˜๋Š”์ง€ ์‚ดํŽด๋ณด์ž.

\[c_1 A \mathbf{x}_1 + c_2 A \mathbf{x}_2 + \cdots + c_r A \mathbf{x}_r = \mathbf{0}\]

๊ทธ๋ฆฌ๊ณ  ์œ„์˜ ์‹์„ ์ž˜ ์ •๋ฆฌํ•ด $\mathbf{v}$๋ผ๋Š” ์ผ์ฐจ๊ฒฐํ•ฉ์œผ๋กœ ๋งŒ๋“ค์–ด์ง„ ๋ฒกํ„ฐ๋ฅผ ์ด๋ฆ„๋ถ™์ธ๋‹ค.

\[\mathbf{v} = c_1 \mathbf{x}_1 + \cdots c_r \mathbf{x}_r\]

๊ทธ๋Ÿฌ๋ฉด ์‹์„ ์ •๋ฆฌํ•ด ์•„๋ž˜์™€ ๊ฐ™์ด ๋œ๋‹ค.

\[A \mathbf{v} = \mathbf{0}\]

์ผ๋‹จ ์œ„์˜ $A \mathbf{v} = \mathbf{0}$์€ 2๊ฐ€์ง€ ์˜๋ฏธ๋ฅผ ๊ฐ–๋Š”๋‹ค.

  1. ๋ฒกํ„ฐ $\mathbf{v}$๊ฐ€ $A$์˜ ๋ชจ๋“  ํ–‰๊ณผ ์ง๊ต(orthogonal)ํ•œ๋‹ค.
    1. $A \mathbf{v} = \mathbf{0}$์ด ๋˜๋ ค๋ฉด, ๊ฐ ํ–‰๊ณผ ๋‚ด์ ํ•œ ๊ฐ’์ด 0์ด ๋˜์–ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ
  2. ๋ฒกํ„ฐ $\mathbf{v}$๊ฐ€ ํ–‰ basis์˜ ์ผ์ฐจ ๊ฒฐํ•ฉ์ด๊ธฐ ๋•Œ๋ฌธ์—, $A$์˜ ํ–‰๊ณต๊ฐ„์— ๋‹ค์‹œ ์†ํ•˜๋Š” ๋ฒกํ„ฐ๋‹ค. 1๋ฒˆ์˜ ์‚ฌ์‹ค์€ ๋ฒกํ„ฐ $\mathbf{v}$๊ฐ€ ์ž๊ธฐ ์ž์‹ ๊ณผ๋„ ์ง๊ต ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋งํ•œ๋‹ค.

1๋ฒˆ, 2๋ฒˆ์˜ ์‚ฌ์‹ค์— ์˜ํ•ด $\mathbf{v} = \mathbf{0}$๋ผ๋Š” ๊ฒฐ๋ก ์ด ๋‚˜์˜จ๋‹ค. (์ž๊ธฐ ์ž์‹ ๊ณผ ์ง๊ตํ•œ๋‹ค๋Š” ๊ฑด ์˜๋ฒกํ„ฐ์ž„์„ ์˜๋ฏธํ•œ๋‹ค.) ๋”ฐ๋ผ์„œ, ํ–‰ basis์— ๋Œ€ํ•ด ์•„๋ž˜ ์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

\[c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \cdots + c_r \mathbf{x}_r = \mathbf{0}\]

๊ทธ๋Ÿฐ๋ฐ, $\mathbf{x}_i$๋Š” ํ–‰๊ณต๊ฐ„์˜ basis์ด๋ฏ€๋กœ ์œ„์˜ ์ผ์ฐจ๊ฒฐํ•ฉ ์‹์ด ์„ฑ๋ฆฝํ•˜๋ ค๋ฉด, ๋ชจ๋“  ๊ณ„์ˆ˜๊ฐ€ $0$์ด ๋˜์–ด์•ผ ํ•œ๋‹ค.

์ฒ˜์Œ์— โ€œ$A \mathbf{x}_i$ ๋ฒกํ„ฐ๋“ค์„ ์ผ์ฐจ ๊ฒฐํ•ฉโ€ํ•œ ๊ฒƒ์˜ ๊ณ„์ˆ˜๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ $0$์ด ๋œ๋‹ค๋Š” ๊ฒƒ์„ ๋งํ•˜๋ฉฐ, $A \mathbf{x}_i$ ๋ฒกํ„ฐ๋“ค์ด ๋ชจ๋‘ ์ผ์ฐจ ๋…๋ฆฝ์ž„์„ ๋งํ•œ๋‹ค.


$A \mathbf{x}_i$ ๋ฒกํ„ฐ๋“ค์ด ๋ชจ๋‘ ์ผ์ฐจ ๋…๋ฆฝ์ธ ๊ฒƒ์„ ํ™•์ธํ–ˆ์œผ๋ฏ€๋กœ, ์‹ค์ œ ์—ด๊ณต๊ฐ„์˜ basis ๊ฐฏ์ˆ˜๋Š” $r$๋ณด๋‹ค ํฌ๊ฑฐ๋‚˜ ๊ฐ™์„ ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ ์•„๋ž˜ ์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

\[\dim (\mathcal{R}(A)) = r \le \dim (\mathcal{C}(A))\]

์ด ๊ณผ์ •์„ $A^{T}$์—๋„ ๋™์ผํ•˜๊ฒŒ ์ˆ˜ํ–‰ํ•˜๋ฉด, ์•„๋ž˜์˜ ์‹์„ ์–ป๋Š”๋‹ค.

\[\dim (\mathcal{R}(A)) \ge \dim (\mathcal{C}(A))\]

๋”ฐ๋ผ์„œ, ๋‘ ๋ถ€๋“ฑ์‹์— ์˜ํ•ด

\[\dim (\mathcal{R}(A)) = \dim (\mathcal{C}(A))\]

$\blacksquare$

์š” ์ฆ๋ช…์€ ๊ธฐ๋ณธํ–‰์—ฐ์‚ฐ์œผ๋กœ ์œ ๋„ํ•˜๋Š” ์ฆ๋ช…๋ณด๋‹ค ์ข€ ์–ด๋ ค์šด ๋Š๋‚Œ์ด์—ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์ฆ๋ช…์„ ๋‹ค์‹œ ์ฝ์—ˆ์„ ๋–„, ์ดํ•ด๊ฐ€ ๋„ˆ๋ฌด ์•ˆ ๋˜์–ด์„œ ํ•œ๋ฒˆ ๋‹ค์‹œ ๋‹ค๋“ฌ๊ธฐ๋„ ํ–ˆ๋‹ค ใ…‹ใ…‹

๊ทธ๋ž˜๋„ ์•„์ง ์ดํ•ด๊ฐ€ ์•ˆ ๋˜๋Š” ๊ฒƒ์€ $A \mathbf{x}_i \in \mathcal{C}(A)$์€ ์ดํ•ด๊ฐ€ ์ž˜ ์•ˆ ๋˜๋Š” ๊ฒƒ ๊ฐ™๋‹ค.

Rank-Nullity Theorem: Rank + Nullity = $n$

For any $A \in \mathbb{R}^{m \times n}$,

\[\dim (\mathcal{R}(A)) + \dim (\mathcal{N}(A)) = n\]

(1) Supp. $\text{rank}(A) = n$, then the only solution for $A \mathbf{x} = 0$ is $\mathbf{x} = 0$ ($\because$ All rows are linearly independent.)

Therefore, nullity $\dim (\mathcal{N}(A)) = 0$, and given equation holds.

(2) Supp. $\text{rank}(A) = r < n$.

Then $\exists$ $n-r$ free variables in the solution of $A \mathbf{x} = 0$.

Then, we can easily get $n-r$ number of vectors in $\mathcal{N}(A)$, by one-hot at position of only one free variable. These $n-r$ number of vectors are linearly independent. Also, these forms null space of $A$!! Therefore, $\dim (\mathcal{N}(A)) = n-r$.

Thus,

\[\text{rank}(A) + \dim (\mathcal{N}(A)) = r + (n-r) = n\]

$\blacksquare$