Bernoulli Process
โํ๋ฅ ๊ณผ ํต๊ณ(MATH230)โ ์์ ์์ ๋ฐฐ์ด ๊ฒ๊ณผ ๊ณต๋ถํ ๊ฒ์ ์ ๋ฆฌํ ํฌ์คํธ์ ๋๋ค. ์ ์ฒด ํฌ์คํธ๋ Probability and Statistics์์ ํ์ธํ์ค ์ ์์ต๋๋ค ๐ฒ
Bernoulli Process
Definition. Bernoulli Process
The <Bernoulli process> is a sequence of independent Bernoulli trials.
At each trial $X_i$,
- $P(H) = P(X_i = 1) = p$
- $P(T) = P(X_i = 0) = 1-p$
์ฆ, ๋ฒ ๋ฅด๋์ด ์ํ์ Bernoulli RV Sequence $X = \{ X_n : n=1, 2, \dots \}$๋ผ๊ณ ๋ณผ ์ ์๋ค.
\[X_i \sim \text{Ber}(p) \quad \text{and} \quad X \sim \text{BP}(p)\]์ด๋ฐ ๋ฒ ๋ฅด๋์ด ํ๋ก์ธ์ค์ ์๋ก๋
- ๋งค์ผ ์ฝ์คํผ ์ง์์ ์์น/ํ๋ฝ์ ๋ํ binary sequence
- ์ฃผ์ด์ง time interval์ ์ ํธ๊ฐ ์์ ๋๋์ง ์๋์ง์ ๋ํ binary seq.
<Bernoulii Process>์์ ์ด๋ค random variable $Y$๋ฅผ ์กฐ๊ฑด๊ณผ ํจ๊ป ์ ์ํ๋ฉด ์๋ก์ด ํ๋ฅ ๋ถํฌ๋ฅผ ์ ๋ํ ์ ์๋ค! ์ฐ๋ฆฌ๋ <Binomial distribution>, <Geometric distribution>, <Negative BIN distribution>์ <Bernoulli Process>๋ก๋ถํฐ ์ ๋ํด๋ณด๊ฒ ๋ค ๐
1. Number of Success $S_n$ in $n$ trials.
Letโs derive a random variable $S_n = X_1 + \cdots + X_n$ from the Bernoulli Process.
Then, $S_n$ follows the <Binomial Distribution>!
\[P(S_n = x) = \binom{n}{x} p^x (1-p)^{n-x} \quad \text{for} \; x=0, 1, \dots, n\]2. Time until the first success
Letโs derive a randome variable $T_1 = \min \{ i \in \mathbb{N} : X_i = 1\}$ from the Bernoulli Process.
Then, $T_1$ follows the <Geometric Distribution>!
\[P(T_1 = x) = P(\underbrace{0, 0, \dots, 0}_{x-1}, 1) = (1-p)^{x-1} p \quad \text{for} \; x=1, 2, \dots\]3. Time until the first $k$ success
<Geometric Random Variable>์ธ $T_1$์ ํ์ฅํ ๊ฐ๋ ์ด๋ค.
Letโs derive a randome variable $T_k = \min \{ i \in \mathbb{N} : | \{ X_i : X_i = 1 \} | = k\}$ from the Bernoulli Process.
Then, $T_n$ follows the <Negative Binomial Distribution>!
\[P(T_k = x) = P(\underbrace{0, 1, \dots, 1, \dots, 0}_{k-1 \text{ success}}, 1) = \binom{x-1}{k-1} (1-p)^{x-k} p^k \quad \text{for} \; x=k, k+1, \dots\]๋งบ์๋ง
์ฌ์ค ์ด๊ฒ๋ณด๋ค ๋ ์ค์ํ ๊ฒ์ ๋ฐ๋ก ์ด์ด์ ์ดํด๋ณผ โํธ์์ก ํ๋ก์ธ์คโ๋ค. ํธ์์ก ํ๋ก์ธ์ค๋ ๊ทธ ์์ฒด๋ก๋ ์ฌ๋ฐ๋ ์ฑ์ง์ด ๋ง์ด ๋์ค๊ณ , ์ฌ๋ฌ ํ๋ฅ ๋ถํฌ์ ์ฎ์ฌ ์๋ค ใ ใ ๊ทธ๋ผ ๋ฐ๋ก ๋น ์ ธ๋ณด์!
โPoisson Processโ