โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

3 minute read

โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

Bernoulli Process

Definition. Bernoulli Process

The <Bernoulli process> is a sequence of independent Bernoulli trials.

At each trial $X_i$,

  • $P(H) = P(X_i = 1) = p$
  • $P(T) = P(X_i = 0) = 1-p$

์ฆ‰, ๋ฒ ๋ฅด๋ˆ„์ด ์‹œํ–‰์€ Bernoulli RV Sequence $X = \{ X_n : n=1, 2, \dots \}$๋ผ๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

\[X_i \sim \text{Ber}(p) \quad \text{and} \quad X \sim \text{BP}(p)\]

์ด๋Ÿฐ ๋ฒ ๋ฅด๋ˆ„์ด ํ”„๋กœ์„ธ์Šค์˜ ์˜ˆ๋กœ๋Š”

  • ๋งค์ผ ์ฝ”์Šคํ”ผ ์ง€์ˆ˜์˜ ์ƒ์Šน/ํ•˜๋ฝ์— ๋Œ€ํ•œ binary sequence
  • ์ฃผ์–ด์ง„ time interval์— ์‹ ํ˜ธ๊ฐ€ ์ˆ˜์‹ ๋˜๋Š”์ง€ ์•„๋‹Œ์ง€์— ๋Œ€ํ•œ binary seq.

<Bernoulii Process>์—์„œ ์–ด๋–ค random variable $Y$๋ฅผ ์กฐ๊ฑด๊ณผ ํ•จ๊ป˜ ์ •์˜ํ•˜๋ฉด ์ƒˆ๋กœ์šด ํ™•๋ฅ  ๋ถ„ํฌ๋ฅผ ์œ ๋„ํ•  ์ˆ˜ ์žˆ๋‹ค! ์šฐ๋ฆฌ๋Š” <Binomial distribution>, <Geometric distribution>, <Negative BIN distribution>์„ <Bernoulli Process>๋กœ๋ถ€ํ„ฐ ์œ ๋„ํ•ด๋ณด๊ฒ ๋‹ค ๐Ÿ˜

1. Number of Success $S_n$ in $n$ trials.

Letโ€™s derive a random variable $S_n = X_1 + \cdots + X_n$ from the Bernoulli Process.

Then, $S_n$ follows the <Binomial Distribution>!

\[P(S_n = x) = \binom{n}{x} p^x (1-p)^{n-x} \quad \text{for} \; x=0, 1, \dots, n\]

2. Time until the first success

Letโ€™s derive a randome variable $T_1 = \min \{ i \in \mathbb{N} : X_i = 1\}$ from the Bernoulli Process.

Then, $T_1$ follows the <Geometric Distribution>!

\[P(T_1 = x) = P(\underbrace{0, 0, \dots, 0}_{x-1}, 1) = (1-p)^{x-1} p \quad \text{for} \; x=1, 2, \dots\]

3. Time until the first $k$ success

<Geometric Random Variable>์ธ $T_1$์„ ํ™•์žฅํ•œ ๊ฐœ๋…์ด๋‹ค.

Letโ€™s derive a randome variable $T_k = \min \{ i \in \mathbb{N} : | \{ X_i : X_i = 1 \} | = k\}$ from the Bernoulli Process.

Then, $T_n$ follows the <Negative Binomial Distribution>!

\[P(T_k = x) = P(\underbrace{0, 1, \dots, 1, \dots, 0}_{k-1 \text{ success}}, 1) = \binom{x-1}{k-1} (1-p)^{x-k} p^k \quad \text{for} \; x=k, k+1, \dots\]

๋งบ์Œ๋ง

์‚ฌ์‹ค ์ด๊ฒƒ๋ณด๋‹ค ๋” ์ค‘์š”ํ•œ ๊ฒƒ์€ ๋ฐ”๋กœ ์ด์–ด์„œ ์‚ดํŽด๋ณผ โ€œํ‘ธ์•„์†ก ํ”„๋กœ์„ธ์Šคโ€๋‹ค. ํ‘ธ์•„์†ก ํ”„๋กœ์„ธ์Šค๋Š” ๊ทธ ์ž์ฒด๋กœ๋„ ์žฌ๋ฐŒ๋Š” ์„ฑ์งˆ์ด ๋งŽ์ด ๋‚˜์˜ค๊ณ , ์—ฌ๋Ÿฌ ํ™•๋ฅ  ๋ถ„ํฌ์™€ ์—ฎ์—ฌ ์žˆ๋‹ค ใ…Žใ…Ž ๊ทธ๋Ÿผ ๋ฐ”๋กœ ๋น ์ ธ๋ณด์ž!

โ€œPoisson Processโ€