โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

14 minute read

โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

Moment Generating FunctionPermalink

Definition. moment

We call E[Xk] as the <k-th moment> of X.

Remark.

1. Moments can be infinite.

2. Moments may not be defined.

ํ•˜์ง€๋งŒ, ์ •๊ทœ ์ˆ˜์—…์—์„œ๋Š” ์œ„์˜ ์‚ฌ๋ก€๋“ค์„ ๋‹ค๋ฃจ์ง€๋Š” ์•Š๋Š”๋‹ค!


Definition. MGF; Moment Generating Function

The <moment generating function> of X is given by

MX(t):=E[etX]

Q. Why is this called the โ€œmomentโ€ generating function?

A. Because it generates moments!

Note that

ddtetX=XetX

and then,

ddtMX(t)=ddtE[etX]=E[ddtetX]=E[XetX]

์œ„์˜ ์‹ ddtMX(t)์—์„œ ์šฐ๋ฆฌ๊ฐ€ t=0์„ ๋Œ€์ž…ํ•œ๋‹ค๋ฉด, ์šฐ๋ฆฌ๋Š” ์†์‰ฝ๊ฒŒ moment๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค!

ddtMX(t)|t=0=E[XetX]|t=0=E[X]

๋งˆ์ฐฌ๊ฐ€์ง€๋กœ

dkdtketX=d(kโˆ’1)dt(kโˆ’1)XetX=Xd(kโˆ’1)dt(kโˆ’1)etX=โ‹ฏ=XketX

์ธ ์‚ฌ์‹ค์„ ์ด์šฉํ•˜๋ฉด, k-th moment E[Xk]๋„ ์‰ฝ๊ฒŒ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค!!

dkdtkMX(t)|t=0=E[XketX]|t=0=E[Xk]

ExamplesPermalink

BinomialPermalink

Let XโˆผBIN(n,p), then find its MGF.

MX(t)=E[etX]=โˆ‘ketkf(k)=โˆ‘k=0netkโ‹…(nk)pkqnโˆ’k=โˆ‘k=0n(nk)โ‹…(pโ‹…et)kqnโˆ’k=(pโ‹…et+q)n

์œ„์˜ MGF๋ฅผ ํ†ตํ•ด ์ง์ ‘ E[X]๋ฅผ ๊ตฌํ•ด๋ณด๋ฉด,

ddtMX(t)|t=0=nโ‹…pโ‹…(pโ‹…et+q)nโˆ’1|t=0=np

PoissonPermalink

Let XโˆผPoi(ฮป), find its MGF.

MX(t)=E[etX]=โˆ‘k=0โˆžetkโ‹…eโˆ’ฮปฮปkk!=eโˆ’ฮปโ‹…โˆ‘k=0โˆž(etฮป)kk!=eโˆ’ฮปโ‹…expโก(ฮปet)=expโก(ฮป(etโˆ’1))

์ด๊ฒŒ ์œ„์˜ MGF๋ฅผ ์ด์šฉํ•ด E[X]๋ฅผ ๊ตฌํ•ด๋ณด์ž!

ddtexpโก(ฮป(etโˆ’1))|t=0=(ddtฮป(etโˆ’1))โ‹…expโก(ฮป(etโˆ’1))|t=0=ฮปโ‹…expโก(ฮป(etโˆ’1))|t=0=ฮปโ‹…expโก(ฮป(1โˆ’1))=ฮปโ‹…1=ฮป

Negative BinomialPermalink

Let XโˆผNegBIN(k,p), find its MGF.

MX(t)=โˆ‘x=kโˆžetxโ‹…(xโˆ’1kโˆ’1)pkqxโˆ’k=(pq)kโ‹…โˆ‘x=kโˆž(xโˆ’1kโˆ’1)(etq)x

์œ„์˜ ์‹์—์„œ y=xโˆ’k๋ฅผ ๋Œ€์ž…ํ•˜์ž.

(pq)kโ‹…โˆ‘x=kโˆž(xโˆ’1kโˆ’1)(etq)x=(pq)kโ‹…โˆ‘y=0โˆž(y+kโˆ’1kโˆ’1)(etq)y+k=(pq)kโ‹…(etq)kโˆ‘y=0โˆž(y+kโˆ’1kโˆ’1)(etq)y=(pโ‹…et)kโ‹…โˆ‘y=0โˆž(y+kโˆ’1kโˆ’1)(etq)y

์ด๋•Œ, (y+kโˆ’1kโˆ’1)์— ๋Œ€ํ•ด ์•„๋ž˜์˜ ์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

(y+kโˆ’1kโˆ’1)=(โˆ’1)yโ‹…(โˆ’ky)

์œ„์˜ ์‹์„ ๋Œ€์ž…ํ•˜๋ฉด,

(pโ‹…et)kโ‹…โˆ‘y=0โˆž(y+kโˆ’1kโˆ’1)(etq)y=(pโ‹…et)kโ‹…โˆ‘y=0โˆž(โˆ’1)yโ‹…(โˆ’ky)(etq)y=(pโ‹…et)kโ‹…(1โˆ’qโ‹…et)โˆ’k=(pโ‹…et1โˆ’qโ‹…et)kfor1โˆ’qโ‹…et>0

๋งŒ์•ฝ k=1์ด๋ผ๋ฉด, RV X๊ฐ€ Geometric Distribution์„ ๋”ฐ๋ฅด๊ฒŒ ๋˜๋ฏ€๋กœ, Geo์˜ MGF๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค๋Š” ์‚ฌ์‹ค์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

MX(t)=pโ‹…et1โˆ’qโ‹…etfor1โˆ’qโ‹…et>0

GammaPermalink

Let XโˆผGamma(ฮฑ,ฮฒ), find its MGF.

์šฐ๋ฆฌ๋Š” ๋…ผ์˜์˜ ํŽธ์˜๋ฅผ ์œ„ํ•ด YโˆผGamma(ฮฑ,1)๋ฅผ ๋จผ์ € ์‚ดํŽด๋ณผ ๊ฒƒ์ด๋‹ค. (Y์— ๋Œ€ํ•ด ฮฒY=X์ด๊ธฐ ๋•Œ๋ฌธ!)

MY(t)=E[etY]=โˆซ0โˆžetxโ‹…1ฮ“(ฮฑ)โ‹…xฮฑโˆ’1eโˆ’xdx=1ฮ“(ฮฑ)โ‹…โˆซ0โˆžxฮฑโˆ’1โ‹…eโˆ’(1โˆ’t)xdx

์ด๋•Œ, ์œ„์˜ ์‹์—์„œ ฮฒ=11โˆ’t๋กœ ๋‘๋ฉด, ์œ ๋„ ๊ณผ์ • ์ค‘์— ๊ฐ๋งˆ ๋ถ„ํฌ์— ๋Œ€ํ•œ ์ ๋ถ„์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์†์‰ฝ๊ฒŒ ๊ณผ์ •์„ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค.

1ฮ“(ฮฑ)โ‹…โˆซ0โˆžxฮฑโˆ’1โ‹…eโˆ’(1โˆ’t)xdx=1ฮ“(ฮฑ)โ‹…โˆซ0โˆžxฮฑโˆ’1โ‹…eโˆ’x1/(1โˆ’t)dx=1(1โˆ’t)ฮฑโ‹…โˆซ0โˆž1ฮ“(ฮฑ)โ‹…1(1โˆ’t)ฮฑโ‹…xฮฑโˆ’1โ‹…eโˆ’x1/(1โˆ’t)dx1=1(1โˆ’t)ฮฑfort<1

์ด์ œ, X=ฮฒY์˜ ๊ด€๊ณ„์‹์„ ์ด์šฉํ•ด X์˜ MGF๋ฅผ ๊ตฌํ•˜๋ฉด

MX(t)=E[etX]=E[etฮฒY]=1(1โˆ’ฮฒt)ฮฑforฮฒt<1(=t<ฮป)

์ด์ œ ์œ„์˜ ์‹์„ ์ด์šฉํ•ด Exponential Distribution์˜ MGF๋„ ๊ตฌํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ,

MX(t)=11โˆ’ฮฒtforฮฒt<1(=t<ฮป)

NormalPermalink

Let ZโˆผN(0,1), then find its MGF.

MZ(t)=E[etZ]=โˆซโˆ’โˆžโˆžetxโ‹…12ฯ€eโˆ’x22dx=โˆซโˆ’โˆžโˆž12ฯ€โ‹…etxโ‹…eโˆ’(xโˆ’t)2+2xtโˆ’t22dx=โˆซโˆ’โˆžโˆž12ฯ€โ‹…eโˆ’(xโˆ’t)22โ‹…etxโ‹…eโˆ’2xtโˆ’t22dx=et2/2โ‹…โˆซโˆ’โˆžโˆž12ฯ€โ‹…eโˆ’(xโˆ’t)22dx1=et2/2

์ด์ œ XโˆผN(ฮผ,ฯƒ2)์œผ๋กœ ์ผ๋ฐ˜ํ™”ํ•˜๋ฉด, X=ฯƒZ+ฮผ์ด๋ฏ€๋กœ

MX(t)=E[etX]=E[eฯƒtz+ฮผt]=eฮผtโ‹…E[eฯƒtz]=eฮผtโ‹…eฯƒ2t2/2=expโก(ฮผt+ฯƒ2t22)

LinearityPermalink

If X has the mgf MX(t), then Y=aX+b has the mgf

MY(t)=ebtโ‹…MX(at)

Uniqueness Theorem for MGFPermalink

mgf๋Š” ๋ฏธ๋ถ„๋งŒ ํ•˜๋ฉด momentum์„ ์‰ฝ๊ฒŒ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ๋„ ์žˆ์ง€๋งŒ, <Uniqueness Theorem>์ด๋ผ๋Š” ์•„๋ž˜์˜ ์ •๋ฆฌ์— ์˜ํ•ด ๋‘ RV์ด ๋™์ผํ•œ ๋ถ„ํฌ๋ฅผ ๊ฐ€์ง€๋Š” ๊ฒƒ์„ ๋ณด์žฅํ•˜๋Š” ์กฐ๊ฑด์ด ๋˜๊ธฐ๋„ ํ•œ๋‹ค.

Theorem. Uniqueness Theorem

If MX(t)=MY(t) for all tโˆˆ(โˆ’ฮด,ฮด) for some ฮด>0,

then X and Y have the same distribution.

๋”ฐ๋ผ์„œ, ๋‘ RV์ด ๋™์ผํ•œ ๋ถ„ํฌ๋ฅผ ๊ฐ€์ง€๋Š”์ง€ ํ™•์ธํ•˜๋ ค๋ฉด, ๋‘ RV์˜ mgf๋ฅผ ํ™•์ธํ•ด๋ณด๋ฉด ๋œ๋‹ค!


Example.

Q. Let X be a random variable with MX(t)=11โˆ’2t for t<12. What is the distribution of X?

A. XโˆผExp(ฮป=2)


Example.

Q. How about MX(t)=12et+12eโˆ’t for tโˆˆR?

A.

MX(t)=E[etX]=โˆ‘etXโ‹…f(x)=โˆ‘xetXโ‹…P(X=x)=e1โ‹…xโ‹…P(X=1)+eโˆ’1โ‹…xโ‹…P(X=โˆ’1)=exโ‹…12+eโˆ’xโ‹…12

์ด๋•Œ, ์•„๋ž˜์™€ ๊ฐ™์€ ๋ถ„ํฌ๋ฅผ ๊ฐ€์ง€๋Š” RV Y๊ฐ€ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์ž.

f(y):={1/2ifxยฑ10else

์ด๋•Œ, Y์˜ mgf๋Š” MY(t)=12et+12eโˆ’t์ด๋‹ค.

์œ„์—์„œ ์–ธ๊ธ‰ํ•œ <Uniqueness Theorem for MGF>์— ์˜ํ•ด X์™€ Y๋Š” ๋™์ผํ•œ ๋ถ„ํฌ๋ฅผ ๊ฐ€์ง„๋‹ค. โ—ผ


์Šคํฌ๋ฅผ ์กฐ๊ธˆ ํ•˜์ž๋ฉด, <Uniqueness Theorem of MGF>๋Š” ๋‚˜์ค‘์— <Central Limit Theorem>์„ ์ฆ๋ช…ํ•  ๋•Œ, ์ค‘์š”ํ•˜๊ฒŒ ์‚ฌ์šฉ๋œ๋‹ค.

๐Ÿ‘‰ Proof of CLT


MGF with IndependencePermalink

If XโŠฅY, then

MX+Y(t)=MX(t)โ‹…MY(t)

In general, if X1,X2,โ€ฆ,Xn are independent,, then

MX1+โ‹ฏ+Xn(t)=MX1(t)+โ‹ฏ+MXn(t)=โˆ‘i=1nMXi(t)


Example. Tow Independent BIN

Let XโˆผBIN(n,p) and YโˆผBIN(m,p), and XโŠฅY.

Then,

X+YโˆผBIN(n+m,p)
MX+Y(t)=MX(t)โ‹…MY(t)(XโŠฅY)=(pet+q)nโ‹…(pet+q)m=(pet+q)n+m

์œ„์˜ mgf๋Š” ๊ณง BIN(n+m,p)์˜ mgf์™€ ๋™์ผํ•˜๋‹ค. โ—ผ


Example. Two Independent Poi

Let XโˆผPoi(ฮป) and YโˆผPoi(ฮผ), and XโŠฅY.

Then,

X+YโˆผPoi(ฮป+ฮผ)
MX+Y(t)=MX(t)โ‹…MY(t)(XโŠฅY)=expโก(ฮป(etโˆ’1))โ‹…expโก(ฮผ(etโˆ’1))=expโก((ฮป+ฮผ)(etโˆ’1))

์œ„์˜ mgf๋Š” ๊ณง Poi(ฮป+ฮผ)์˜ mgf์™€ ๋™์ผํ•˜๋‹ค. โ—ผ


Example. Two Independent NegBIN

Let XโˆผNegBIN(r1,p) and YโˆผNegBIN(r2,p), and XโŠฅY.

Then,

X+YโˆผNegBIN(r1+r2,p)


Example. Two Independent Normal

Let XโˆผN(ฮผ1,ฯƒ12) and YโˆผN(ฮผ2,ฯƒ22), and XโŠฅY.

Then,

X+YโˆผN(ฮผ1+ฮผ2,ฯƒ12+ฯƒ22)
MX+Y(t)=MX(t)โ‹…MY(t)(XโŠฅY)=expโก(ฮผ1t+ฯƒ12t22)โ‹…expโก(ฮผ2t+ฯƒ22t22)=expโก((ฮผ1+ฮผ2)t+(ฯƒ2+ฯƒ22)t22)

์œ„์˜ mgf๋Š” ๊ณง N(ฮผ1+ฮผ2,ฯƒ12+ฯƒ22)์˜ mgf์™€ ๋™์ผํ•˜๋‹ค. โ—ผ


Example. Two Independent Gamma

Let XโˆผGamma(ฮฑ1,ฮฒ) and YโˆผGamma(ฮฑ2,ฮฒ), and XโŠฅY.

Then,

X+YโˆผGamma(ฮฑ1+ฮฑ2,ฮฒ)

์œ„์˜ ์‚ฌ์‹ค์„ ์ด์šฉํ•˜๋ฉด, Exp์™€ ฯ‡2์— ๋Œ€ํ•ด์„œ๋„ two independent ๊ฒฝ์šฐ๋ฅผ ๋…ผํ•  ์ˆ˜ ์žˆ๋‹ค!

1. If XโˆผExp(ฮฒ), YโˆผExp(ฮฒ) and XโŠฅY. Then,

X+YโˆผGamma(2,ฮฒ)

โ€ป Exp(ฮฒ)=Gamma(1,ฮฒ)


2. If Xโˆผฯ‡2(n), Yโˆผฯ‡2(m) and XโŠฅY. Then,

X+Yโˆผฯ‡2(n+m)

โ€ป ฯ‡2(n)=Gamma(n/2,2)


Example.

Let XโˆผExp(ฮป), YโˆผExp(ฮผ) and XโŠฅY.

Then,

Z=min(X,Y)โˆผExp(ฮป+ฮผ)

์—ฌ๊ธฐ๊นŒ์ง€๊ฐ€ ์ •๊ทœ์ˆ˜์—…์˜ ์ค‘๊ฐ„๊ณ ์‚ฌ ์‹œํ—˜ ๋ฒ”์œ„์ด๋‹ค. ๊ฐœ์ธ์ ์œผ๋กœ ๋…ผ๋ฆฌ๋ฅผ ์ „๊ฐœํ•˜๋Š” ๋ถ€๋ถ„์€ ์‹์„ ์ž˜ ์ •๋ฆฌํ•˜๊ณ , ๋ฌธ์ œ๋ฅผ ์ž˜ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ถ€๋ถ„์„ ์ถฉ๋ถ„ํžˆ ์—ฐ์Šตํ•˜๋ฉด ๋  ๊ฒƒ ๊ฐ™๋‹ค. ๋‹ค๋งŒ, ๊ฐ ๋ถ„ํฌ์˜ ์ •์˜์™€ ํ˜•ํƒœ๊ฐ€ ์กฐ๊ธˆ์”ฉ ํ—ท๊ฐˆ๋ ค์„œ ์‹œํ—˜ ์ „์— ๋ชจ๋“  ๋ถ„ํฌ๋ฅผ ๋น ์ง์—†์ด ๋‹ค ๊ธฐ์ˆ ํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ๋ฐฑ์ง€(็™ฝ็ด™)์— ์ฒดํฌํ•ด๋ณด๋ฉด ์ข‹์„ ๊ฒƒ ๊ฐ™๋‹ค.