Momemtum Generating Function
βνλ₯ κ³Ό ν΅κ³(MATH230)β μμ μμ λ°°μ΄ κ²κ³Ό 곡λΆν κ²μ μ 리ν ν¬μ€νΈμ λλ€. μ 체 ν¬μ€νΈλ Probability and Statisticsμμ νμΈνμ€ μ μμ΅λλ€ π²
Moment Generating Function
Definition. moment
We call $E[X^k]$ as the <$k$-th moment> of $X$.
Remark.
1. Moments can be infinite.
2. Moments may not be defined.
νμ§λ§, μ κ· μμ μμλ μμ μ¬λ‘λ€μ λ€λ£¨μ§λ μλλ€!
Definition. MGF; Moment Generating Function
The <moment generating function> of $X$ is given by
\[M_X(t) := E[e^{tX}]\]Q. Why is this called the βmomentβ generating function?
A. Because it generates moments!
Note that
\[\frac{d}{dt} e^{tX} = X e^{tX}\]and then,
\[\begin{aligned} \frac{d}{dt} M_X(t) &= \frac{d}{dt} E[e^{tX}] \\ &= E \left[ \frac{d}{dt} e^{tX}\right] \\ &= E \left[ X e^{tX}\right] \end{aligned}\]μμ μ $\dfrac{d}{dt} M_X(t)$μμ μ°λ¦¬κ° $t=0$μ λμ νλ€λ©΄, μ°λ¦¬λ μμ½κ² momentλ₯Ό μ»μ μ μλ€!
\[\left. \frac{d}{dt} M_X(t) \right|_{t=0} = \left. E \left[ X e^{tX}\right] \right|_{t=0} = E[X]\]λ§μ°¬κ°μ§λ‘
\[\frac{d^k}{dt^k} e^{tX} = \frac{d^{(k-1)}}{dt^{(k-1)}} X e^{tX} = X \frac{d^{(k-1)}}{dt^{(k-1)}} e^{tX} = \cdots = X^k e^{tX}\]μΈ μ¬μ€μ μ΄μ©νλ©΄, $k$-th moment $E[X^k]$λ μ½κ² ꡬν μ μλ€!!
\[\left. \frac{d^k}{dt^k} M_X(t) \right|_{t=0} = \left. E \left[ X^k e^{tX}\right] \right|_{t=0} = E[X^k]\]Examples
Binomial
Let $X \sim \text{BIN}(n, p)$, then find its MGF.
\[\begin{aligned} M_X(t) &= E[e^{tX}] \\ &= \sum_k e^{tk} f(k) \\ &= \sum^n_{k=0} e^{tk} \cdot \binom{n}{k} p^k q^{n-k} \\ &= \sum^n_{k=0} \binom{n}{k} \cdot \left( p \cdot e^t \right)^k q^{n-k} \\ &= \left( p \cdot e^t + q \right)^n \end{aligned}\]μμ MGFλ₯Ό ν΅ν΄ μ§μ $E[X]$λ₯Ό ꡬν΄λ³΄λ©΄,
\[\left. \frac{d}{dt} M_X(t) \right|_{t=0} = \left. n \cdot p \cdot \left( p \cdot e^t + q \right)^{n-1} \right|_{t=0} = np\]Poisson
Let $X \sim \text{Poi}(\lambda)$, find its MGF.
\[\begin{aligned} M_X(t) &= E[e^{tX}] \\ &= \sum^{\infty}_{k=0} e^{tk} \cdot e^{-\lambda} \frac{\lambda^{k}}{k!} \\ &= e^{-\lambda} \cdot \sum^{\infty}_{k=0} \frac{\left(e^t \lambda \right)^k}{k!} \\ &= e^{-\lambda} \cdot \exp \left( \lambda e^t\right) = \exp (\lambda(e^t - 1)) \end{aligned}\]μ΄κ² μμ MGFλ₯Ό μ΄μ©ν΄ $E[X]$λ₯Ό ꡬν΄λ³΄μ!
\[\begin{aligned} \left. \frac{d}{dt} \exp (\lambda(e^t - 1)) \right|_{t=0} &= \left. \left( \frac{d}{dt} \lambda(e^t - 1) \right) \cdot \exp (\lambda(e^t - 1)) \right|_{t=0} \\ &= \left. \lambda \cdot \exp (\lambda(e^t - 1)) \right|_{t=0} \\ &= \lambda \cdot \exp (\lambda(1 - 1)) = \lambda \cdot 1 \\ &= \lambda \end{aligned}\]Negative Binomial
Let $X \sim \text{NegBIN}(k, p)$, find its MGF.
\[\begin{aligned} M_X(t) &= \sum^{\infty}_{x=k} e^{tx} \cdot \binom{x-1}{k-1} p^{k} q^{x-k} \\ &= \left(\frac{p}{q}\right)^k \cdot \sum^{\infty}_{x=k} \binom{x-1}{k-1} \left( e^t q \right)^{x} \\ \end{aligned}\]μμ μμμ $y = x-k$λ₯Ό λμ νμ.
\[\begin{aligned} \left(\frac{p}{q}\right)^k \cdot \sum^{\infty}_{x=k} \binom{x-1}{k-1} \left( e^t q \right)^{x} &= \left(\frac{p}{q}\right)^k \cdot \sum^{\infty}_{y=0} \binom{y+k-1}{k-1} \left( e^t q \right)^{y+k} \\ &= \left(\frac{p}{q}\right)^k \cdot \left( e^t q \right)^k \sum^{\infty}_{y=0} \binom{y+k-1}{k-1} \left( e^t q \right)^y \\ &= (p \cdot e^t)^k \cdot \sum^{\infty}_{y=0} \binom{y+k-1}{k-1} \left( e^t q \right)^y \end{aligned}\]μ΄λ, $\displaystyle \binom{y+k-1}{k-1}$μ λν΄ μλμ μμ΄ μ±λ¦½νλ€.
\[\binom{y+k-1}{k-1} = \left( -1 \right)^y \cdot \binom{-k}{y}\]μμ μμ λμ νλ©΄,
\[\begin{aligned} (p \cdot e^t)^k \cdot \sum^{\infty}_{y=0} \binom{y+k-1}{k-1} \left( e^t q \right)^y &= (p \cdot e^t)^k \cdot \sum^{\infty}_{y=0} \left( -1 \right)^y \cdot \binom{-k}{y} \left( e^t q \right)^y \\ &= (p \cdot e^t)^k \cdot \left( 1 - q\cdot e^t \right)^{-k} \\ &= \left( \frac{p \cdot e^t}{1 - q\cdot e^t} \right)^k \qquad \text{for} \quad 1 - q \cdot e^{t} > 0 \end{aligned}\]λ§μ½ $k=1$μ΄λΌλ©΄, RV $X$κ° Geometric Distributionμ λ°λ₯΄κ² λλ―λ‘, Geoμ MGFλ μλμ κ°λ€λ μ¬μ€μ μ μ μλ€.
\[M_X (t) = \frac{p \cdot e^t}{1 - q\cdot e^t} \qquad \text{for} \quad 1 - q \cdot e^{t} > 0\]Gamma
Let $X \sim \text{Gamma}(\alpha, \beta)$, find its MGF.
μ°λ¦¬λ λ Όμμ νΈμλ₯Ό μν΄ $Y \sim \text{Gamma}(\alpha, 1)$λ₯Ό λ¨Όμ μ΄ν΄λ³Ό κ²μ΄λ€. ($Y$μ λν΄ $\beta Y = X$μ΄κΈ° λλ¬Έ!)
\[\begin{aligned} M_Y(t) &= E[e^{tY}] \\ &= \int^{\infty}_0 e^{tx} \cdot \frac{1}{\Gamma(\alpha)} \cdot x^{\alpha-1} e^{-x} \; dx\\ &= \frac{1}{\Gamma(\alpha)} \cdot \int^{\infty}_0 x^{\alpha-1}\cdot e^{-(1-t)x} \; dx \\ \end{aligned}\]μ΄λ, μμ μμμ $\beta = \dfrac{1}{1-t}$λ‘ λλ©΄, μ λ κ³Όμ μ€μ κ°λ§ λΆν¬μ λν μ λΆμ΄ μκΈ° λλ¬Έμ μμ½κ² κ³Όμ μ μ§νν μ μλ€.
\[\begin{aligned} \frac{1}{\Gamma(\alpha)} \cdot \int^{\infty}_0 x^{\alpha-1}\cdot e^{-(1-t)x} \; dx &= \frac{1}{\Gamma(\alpha)} \cdot \int^{\infty}_0 x^{\alpha-1}\cdot e^{-\frac{x}{1/(1-t)}} \; dx \\ &= \frac{1}{(1-t)^{\alpha}} \cdot \cancelto{1}{\int^{\infty}_0 \frac{1}{\Gamma(\alpha) \cdot \frac{1}{(1-t)^{\alpha}}} \cdot x^{\alpha-1} \cdot e^{-\frac{x}{1/(1-t)}} \; dx} \\ &= \frac{1}{(1-t)^{\alpha}} \qquad \text{for} \quad t < 1 \end{aligned}\]μ΄μ , $X = \beta Y$μ κ΄κ³μμ μ΄μ©ν΄ $X$μ MGFλ₯Ό ꡬνλ©΄
\[\begin{aligned} M_X(t) = E[e^{tX}] = E[e^{t\beta Y}] = \frac{1}{(1-\beta t)^{\alpha}} \qquad \text{for} \quad \beta t < 1 \quad (=t < \lambda) \end{aligned}\]μ΄μ μμ μμ μ΄μ©ν΄ Exponential Distributionμ MGFλ ꡬν μ μλλ°,
\[M_X(t) = \frac{1}{1-\beta t} \qquad \text{for} \quad \beta t < 1 \quad (=t < \lambda)\]Normal
Let $Z \sim N(0, 1)$, then find its MGF.
\[\begin{aligned} M_Z (t) &= E[e^{tZ}] \\ &= \int^{\infty}_{-\infty} e^{tx} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \; dx \\ &= \int^{\infty}_{-\infty} \frac{1}{\sqrt{2\pi}} \cdot e^{tx} \cdot e^{-\frac{(x-t)^2 + 2xt - t^2}{2}} \; dx \\ &= \int^{\infty}_{-\infty} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{(x-t)^2}{2}} \cdot e^{tx} \cdot e^{-\frac{2xt-t^2}{2}} \; dx \\ &= e^{t^2 / 2} \cdot \cancelto{1}{\int^{\infty}_{-\infty} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{(x-t)^2}{2}} \; dx} \\ &= e^{t^2 / 2} \end{aligned}\]μ΄μ $X \sim N(\mu, \sigma^2)$μΌλ‘ μΌλ°ννλ©΄, $X = \sigma Z + \mu$μ΄λ―λ‘
\[\begin{aligned} M_X(t) &= E[e^{tX}] = E[e^{\sigma t z + \mu t}] \\ &= e^{\mu t} \cdot E[e^{\sigma t z}] \\ &= e^{\mu t} \cdot e^{\sigma^2t^2 / 2} \\ &= \exp \left( \mu t + \frac{\sigma^2 t^2}{2}\right) \end{aligned}\]Linearity
If $X$ has the mgf $M_X(t)$, then $Y = aX + b$ has the mgf
\[M_Y (t) = e^{bt} \cdot M_X(at)\]Uniqueness Theorem for MGF
mgfλ λ―ΈλΆλ§ νλ©΄ momentumμ μ½κ² ꡬν μ μλ€λ μ₯μ λ μμ§λ§, <Uniqueness Theorem>μ΄λΌλ μλμ μ 리μ μν΄ λ RVμ΄ λμΌν λΆν¬λ₯Ό κ°μ§λ κ²μ 보μ₯νλ μ‘°κ±΄μ΄ λκΈ°λ νλ€.
Theorem. Uniqueness Theorem
If $M_X(t) = M_Y(t)$ for all $t \in (-\delta, \delta)$ for some $\delta > 0$,
then $X$ and $Y$ have the same distribution.
λ°λΌμ, λ RVμ΄ λμΌν λΆν¬λ₯Ό κ°μ§λμ§ νμΈνλ €λ©΄, λ RVμ mgfλ₯Ό νμΈν΄λ³΄λ©΄ λλ€!
Example.
Q. Let $X$ be a random variable with $M_X(t) = \dfrac{1}{1-2t}$ for $t < \frac{1}{2}$. What is the distribution of $X$?
A. $X \sim \text{Exp}(\lambda = 2)$
Example.
Q. How about $M_X(t) = \dfrac{1}{2} e^t + \dfrac{1}{2} e^{-t}$ for $t \in \mathbb{R}$?
A.
\[\begin{aligned} M_X(t) &= E[e^{tX}] \\ &= \sum e^{tX} \cdot f(x) \\ &= \sum_x e^{tX} \cdot P(X = x) \\ &= e^{1\cdot x} \cdot P(X = 1) + e^{-1\cdot x} \cdot P(X = -1) \\ &= e^{x} \cdot \frac{1}{2} + e^{-x} \cdot \frac{1}{2} \end{aligned}\]μ΄λ, μλμ κ°μ λΆν¬λ₯Ό κ°μ§λ RV $Y$κ° μλ€κ³ κ°μ νμ.
\[f(y) := \begin{cases} 1/2 & \text{if} \quad x \pm 1 \\ 0 & \text{else} \end{cases}\]μ΄λ, $Y$μ mgfλ $M_Y(t) = \dfrac{1}{2}e^t + \dfrac{1}{2}e^{-t}$μ΄λ€.
μμμ μΈκΈν <Uniqueness Theorem for MGF>μ μν΄ $X$μ $Y$λ λμΌν λΆν¬λ₯Ό κ°μ§λ€. $\blacksquare$
μ€ν¬λ₯Ό μ‘°κΈ νμλ©΄, <Uniqueness Theorem of MGF>λ λμ€μ <Central Limit Theorem>μ μ¦λͺ ν λ, μ€μνκ² μ¬μ©λλ€.
π Proof of CLT
MGF with Independence
If $X \perp Y$, then
\[M_{X+Y} (t) = M_X(t) \cdot M_Y(t)\]In general, if $X_1, X_2, \dots, X_n$ are independent,, then
\[M_{X_1 + \cdots + X_n}(t) = M_{X_1} (t) + \cdots + M_{X_n} (t) = \sum^n_{i=1} M_{X_i} (t)\]Example. Tow Independent BIN
Let $X \sim \text{BIN}(n, p)$ and $Y \sim \text{BIN}(m, p)$, and $X \perp Y$.
Then,
\[X+Y \sim \text{BIN}(n+m, p)\]μμ mgfλ κ³§ $\text{BIN}(n+m, p)$μ mgfμ λμΌνλ€. $\blacksquare$
Example. Two Independent Poi
Let $X \sim \text{Poi}(\lambda)$ and $Y \sim \text{Poi}(\mu)$, and $X \perp Y$.
Then,
\[X+Y \sim \text{Poi}(\lambda + \mu)\]μμ mgfλ κ³§ $\text{Poi}(\lambda + \mu)$μ mgfμ λμΌνλ€. $\blacksquare$
Example. Two Independent NegBIN
Let $X \sim \text{NegBIN}(r_1, p)$ and $Y \sim \text{NegBIN}(r_2, p)$, and $X \perp Y$.
Then,
\[X+Y \sim \text{NegBIN}(r_1 + r_2, p)\]Example. Two Independent Normal
Let $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$, and $X \perp Y$.
Then,
\[X+Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)\]μμ mgfλ κ³§ $N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$μ mgfμ λμΌνλ€. $\blacksquare$
Example. Two Independent Gamma
Let $X \sim \text{Gamma}(\alpha_1, \beta)$ and $Y \sim \text{Gamma}(\alpha_2, \beta)$, and $X \perp Y$.
Then,
\[X+Y \sim \text{Gamma}(\alpha_1 + \alpha_2, \beta)\]μμ μ¬μ€μ μ΄μ©νλ©΄, $\text{Exp}$μ $\chi^2$μ λν΄μλ two independent κ²½μ°λ₯Ό λ Όν μ μλ€!
1. If $X \sim \text{Exp}(\beta)$, $Y \sim \text{Exp}(\beta)$ and $X \perp Y$. Then,
\[X + Y \sim \text{Gamma}(2, \beta)\]β» $\text{Exp}(\beta) = \text{Gamma}(1, \beta)$
2. If $X \sim \chi^2(n)$, $Y \sim \chi^2(m)$ and $X \perp Y$. Then,
\[X + Y \sim \chi^2(n+m)\]β» $\chi^2(n) = \text{Gamma}(n/2, 2)$
Example.
Let $X \sim \text{Exp}(\lambda)$, $Y \sim \text{Exp}(\mu)$ and $X \perp Y$.
Then,
\[Z = \min(X, Y) \sim \text{Exp}(\lambda + \mu)\]μ¬κΈ°κΉμ§κ° μ κ·μμ μ μ€κ°κ³ μ¬ μν λ²μμ΄λ€. κ°μΈμ μΌλ‘ λ Όλ¦¬λ₯Ό μ κ°νλ λΆλΆμ μμ μ μ 리νκ³ , λ¬Έμ λ₯Ό μ λͺ¨λΈλ§νλ λΆλΆμ μΆ©λΆν μ°μ΅νλ©΄ λ κ² κ°λ€. λ€λ§, κ° λΆν¬μ μ μμ ννκ° μ‘°κΈμ© ν·κ°λ €μ μν μ μ λͺ¨λ λΆν¬λ₯Ό λΉ μ§μμ΄ λ€ κΈ°μ ν μ μλμ§ λ°±μ§(η½η΄)μ 체ν¬ν΄λ³΄λ©΄ μ’μ κ² κ°λ€.