β€œν™•λ₯ κ³Ό 톡계(MATH230)” μˆ˜μ—…μ—μ„œ 배운 것과 κ³΅λΆ€ν•œ 것을 μ •λ¦¬ν•œ ν¬μŠ€νŠΈμž…λ‹ˆλ‹€. 전체 ν¬μŠ€νŠΈλŠ” Probability and Statisticsμ—μ„œ ν™•μΈν•˜μ‹€ 수 μžˆμŠ΅λ‹ˆλ‹€ 🎲

14 minute read

β€œν™•λ₯ κ³Ό 톡계(MATH230)” μˆ˜μ—…μ—μ„œ 배운 것과 κ³΅λΆ€ν•œ 것을 μ •λ¦¬ν•œ ν¬μŠ€νŠΈμž…λ‹ˆλ‹€. 전체 ν¬μŠ€νŠΈλŠ” Probability and Statisticsμ—μ„œ ν™•μΈν•˜μ‹€ 수 μžˆμŠ΅λ‹ˆλ‹€ 🎲

Moment Generating Function

Definition. moment

We call $E[X^k]$ as the <$k$-th moment> of $X$.

Remark.

1. Moments can be infinite.

2. Moments may not be defined.

ν•˜μ§€λ§Œ, μ •κ·œ μˆ˜μ—…μ—μ„œλŠ” μœ„μ˜ 사둀듀을 λ‹€λ£¨μ§€λŠ” μ•ŠλŠ”λ‹€!


Definition. MGF; Moment Generating Function

The <moment generating function> of $X$ is given by

\[M_X(t) := E[e^{tX}]\]

Q. Why is this called the β€œmoment” generating function?

A. Because it generates moments!

Note that

\[\frac{d}{dt} e^{tX} = X e^{tX}\]

and then,

\[\begin{aligned} \frac{d}{dt} M_X(t) &= \frac{d}{dt} E[e^{tX}] \\ &= E \left[ \frac{d}{dt} e^{tX}\right] \\ &= E \left[ X e^{tX}\right] \end{aligned}\]

μœ„μ˜ 식 $\dfrac{d}{dt} M_X(t)$μ—μ„œ μš°λ¦¬κ°€ $t=0$을 λŒ€μž…ν•œλ‹€λ©΄, μš°λ¦¬λŠ” μ†μ‰½κ²Œ momentλ₯Ό 얻을 수 μžˆλ‹€!

\[\left. \frac{d}{dt} M_X(t) \right|_{t=0} = \left. E \left[ X e^{tX}\right] \right|_{t=0} = E[X]\]

λ§ˆμ°¬κ°€μ§€λ‘œ

\[\frac{d^k}{dt^k} e^{tX} = \frac{d^{(k-1)}}{dt^{(k-1)}} X e^{tX} = X \frac{d^{(k-1)}}{dt^{(k-1)}} e^{tX} = \cdots = X^k e^{tX}\]

인 사싀을 μ΄μš©ν•˜λ©΄, $k$-th moment $E[X^k]$도 μ‰½κ²Œ ꡬ할 수 μžˆλ‹€!!

\[\left. \frac{d^k}{dt^k} M_X(t) \right|_{t=0} = \left. E \left[ X^k e^{tX}\right] \right|_{t=0} = E[X^k]\]

Examples

Binomial

Let $X \sim \text{BIN}(n, p)$, then find its MGF.

\[\begin{aligned} M_X(t) &= E[e^{tX}] \\ &= \sum_k e^{tk} f(k) \\ &= \sum^n_{k=0} e^{tk} \cdot \binom{n}{k} p^k q^{n-k} \\ &= \sum^n_{k=0} \binom{n}{k} \cdot \left( p \cdot e^t \right)^k q^{n-k} \\ &= \left( p \cdot e^t + q \right)^n \end{aligned}\]

μœ„μ˜ MGFλ₯Ό 톡해 직접 $E[X]$λ₯Ό ꡬ해보면,

\[\left. \frac{d}{dt} M_X(t) \right|_{t=0} = \left. n \cdot p \cdot \left( p \cdot e^t + q \right)^{n-1} \right|_{t=0} = np\]

Poisson

Let $X \sim \text{Poi}(\lambda)$, find its MGF.

\[\begin{aligned} M_X(t) &= E[e^{tX}] \\ &= \sum^{\infty}_{k=0} e^{tk} \cdot e^{-\lambda} \frac{\lambda^{k}}{k!} \\ &= e^{-\lambda} \cdot \sum^{\infty}_{k=0} \frac{\left(e^t \lambda \right)^k}{k!} \\ &= e^{-\lambda} \cdot \exp \left( \lambda e^t\right) = \exp (\lambda(e^t - 1)) \end{aligned}\]

이게 μœ„μ˜ MGFλ₯Ό μ΄μš©ν•΄ $E[X]$λ₯Ό κ΅¬ν•΄λ³΄μž!

\[\begin{aligned} \left. \frac{d}{dt} \exp (\lambda(e^t - 1)) \right|_{t=0} &= \left. \left( \frac{d}{dt} \lambda(e^t - 1) \right) \cdot \exp (\lambda(e^t - 1)) \right|_{t=0} \\ &= \left. \lambda \cdot \exp (\lambda(e^t - 1)) \right|_{t=0} \\ &= \lambda \cdot \exp (\lambda(1 - 1)) = \lambda \cdot 1 \\ &= \lambda \end{aligned}\]

Negative Binomial

Let $X \sim \text{NegBIN}(k, p)$, find its MGF.

\[\begin{aligned} M_X(t) &= \sum^{\infty}_{x=k} e^{tx} \cdot \binom{x-1}{k-1} p^{k} q^{x-k} \\ &= \left(\frac{p}{q}\right)^k \cdot \sum^{\infty}_{x=k} \binom{x-1}{k-1} \left( e^t q \right)^{x} \\ \end{aligned}\]

μœ„μ˜ μ‹μ—μ„œ $y = x-k$λ₯Ό λŒ€μž…ν•˜μž.

\[\begin{aligned} \left(\frac{p}{q}\right)^k \cdot \sum^{\infty}_{x=k} \binom{x-1}{k-1} \left( e^t q \right)^{x} &= \left(\frac{p}{q}\right)^k \cdot \sum^{\infty}_{y=0} \binom{y+k-1}{k-1} \left( e^t q \right)^{y+k} \\ &= \left(\frac{p}{q}\right)^k \cdot \left( e^t q \right)^k \sum^{\infty}_{y=0} \binom{y+k-1}{k-1} \left( e^t q \right)^y \\ &= (p \cdot e^t)^k \cdot \sum^{\infty}_{y=0} \binom{y+k-1}{k-1} \left( e^t q \right)^y \end{aligned}\]

μ΄λ•Œ, $\displaystyle \binom{y+k-1}{k-1}$에 λŒ€ν•΄ μ•„λž˜μ˜ 식이 μ„±λ¦½ν•œλ‹€.

\[\binom{y+k-1}{k-1} = \left( -1 \right)^y \cdot \binom{-k}{y}\]

μœ„μ˜ 식을 λŒ€μž…ν•˜λ©΄,

\[\begin{aligned} (p \cdot e^t)^k \cdot \sum^{\infty}_{y=0} \binom{y+k-1}{k-1} \left( e^t q \right)^y &= (p \cdot e^t)^k \cdot \sum^{\infty}_{y=0} \left( -1 \right)^y \cdot \binom{-k}{y} \left( e^t q \right)^y \\ &= (p \cdot e^t)^k \cdot \left( 1 - q\cdot e^t \right)^{-k} \\ &= \left( \frac{p \cdot e^t}{1 - q\cdot e^t} \right)^k \qquad \text{for} \quad 1 - q \cdot e^{t} > 0 \end{aligned}\]

λ§Œμ•½ $k=1$이라면, RV $X$κ°€ Geometric Distribution을 λ”°λ₯΄κ²Œ λ˜λ―€λ‘œ, Geo의 MGFλŠ” μ•„λž˜μ™€ κ°™λ‹€λŠ” 사싀을 μ•Œ 수 μžˆλ‹€.

\[M_X (t) = \frac{p \cdot e^t}{1 - q\cdot e^t} \qquad \text{for} \quad 1 - q \cdot e^{t} > 0\]

Gamma

Let $X \sim \text{Gamma}(\alpha, \beta)$, find its MGF.

μš°λ¦¬λŠ” λ…Όμ˜μ˜ 편의λ₯Ό μœ„ν•΄ $Y \sim \text{Gamma}(\alpha, 1)$λ₯Ό λ¨Όμ € μ‚΄νŽ΄λ³Ό 것이닀. ($Y$에 λŒ€ν•΄ $\beta Y = X$이기 λ•Œλ¬Έ!)

\[\begin{aligned} M_Y(t) &= E[e^{tY}] \\ &= \int^{\infty}_0 e^{tx} \cdot \frac{1}{\Gamma(\alpha)} \cdot x^{\alpha-1} e^{-x} \; dx\\ &= \frac{1}{\Gamma(\alpha)} \cdot \int^{\infty}_0 x^{\alpha-1}\cdot e^{-(1-t)x} \; dx \\ \end{aligned}\]

μ΄λ•Œ, μœ„μ˜ μ‹μ—μ„œ $\beta = \dfrac{1}{1-t}$둜 두면, μœ λ„ κ³Όμ • 쀑에 감마 뢄포에 λŒ€ν•œ 적뢄이 있기 λ•Œλ¬Έμ— μ†μ‰½κ²Œ 과정을 μ§„ν–‰ν•  수 μžˆλ‹€.

\[\begin{aligned} \frac{1}{\Gamma(\alpha)} \cdot \int^{\infty}_0 x^{\alpha-1}\cdot e^{-(1-t)x} \; dx &= \frac{1}{\Gamma(\alpha)} \cdot \int^{\infty}_0 x^{\alpha-1}\cdot e^{-\frac{x}{1/(1-t)}} \; dx \\ &= \frac{1}{(1-t)^{\alpha}} \cdot \cancelto{1}{\int^{\infty}_0 \frac{1}{\Gamma(\alpha) \cdot \frac{1}{(1-t)^{\alpha}}} \cdot x^{\alpha-1} \cdot e^{-\frac{x}{1/(1-t)}} \; dx} \\ &= \frac{1}{(1-t)^{\alpha}} \qquad \text{for} \quad t < 1 \end{aligned}\]

이제, $X = \beta Y$의 관계식을 μ΄μš©ν•΄ $X$의 MGFλ₯Ό κ΅¬ν•˜λ©΄

\[\begin{aligned} M_X(t) = E[e^{tX}] = E[e^{t\beta Y}] = \frac{1}{(1-\beta t)^{\alpha}} \qquad \text{for} \quad \beta t < 1 \quad (=t < \lambda) \end{aligned}\]

이제 μœ„μ˜ 식을 μ΄μš©ν•΄ Exponential Distribution의 MGF도 ꡬ할 수 μžˆλŠ”λ°,

\[M_X(t) = \frac{1}{1-\beta t} \qquad \text{for} \quad \beta t < 1 \quad (=t < \lambda)\]

Normal

Let $Z \sim N(0, 1)$, then find its MGF.

\[\begin{aligned} M_Z (t) &= E[e^{tZ}] \\ &= \int^{\infty}_{-\infty} e^{tx} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \; dx \\ &= \int^{\infty}_{-\infty} \frac{1}{\sqrt{2\pi}} \cdot e^{tx} \cdot e^{-\frac{(x-t)^2 + 2xt - t^2}{2}} \; dx \\ &= \int^{\infty}_{-\infty} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{(x-t)^2}{2}} \cdot e^{tx} \cdot e^{-\frac{2xt-t^2}{2}} \; dx \\ &= e^{t^2 / 2} \cdot \cancelto{1}{\int^{\infty}_{-\infty} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{(x-t)^2}{2}} \; dx} \\ &= e^{t^2 / 2} \end{aligned}\]

이제 $X \sim N(\mu, \sigma^2)$으둜 μΌλ°˜ν™”ν•˜λ©΄, $X = \sigma Z + \mu$μ΄λ―€λ‘œ

\[\begin{aligned} M_X(t) &= E[e^{tX}] = E[e^{\sigma t z + \mu t}] \\ &= e^{\mu t} \cdot E[e^{\sigma t z}] \\ &= e^{\mu t} \cdot e^{\sigma^2t^2 / 2} \\ &= \exp \left( \mu t + \frac{\sigma^2 t^2}{2}\right) \end{aligned}\]

Linearity

If $X$ has the mgf $M_X(t)$, then $Y = aX + b$ has the mgf

\[M_Y (t) = e^{bt} \cdot M_X(at)\]

Uniqueness Theorem for MGF

mgfλŠ” λ―ΈλΆ„λ§Œ ν•˜λ©΄ momentum을 μ‰½κ²Œ ꡬ할 수 μžˆλ‹€λŠ” μž₯점도 μžˆμ§€λ§Œ, <Uniqueness Theorem>μ΄λΌλŠ” μ•„λž˜μ˜ 정리에 μ˜ν•΄ 두 RV이 λ™μΌν•œ 뢄포λ₯Ό κ°€μ§€λŠ” 것을 보μž₯ν•˜λŠ” 쑰건이 λ˜κΈ°λ„ ν•œλ‹€.

Theorem. Uniqueness Theorem

If $M_X(t) = M_Y(t)$ for all $t \in (-\delta, \delta)$ for some $\delta > 0$,

then $X$ and $Y$ have the same distribution.

λ”°λΌμ„œ, 두 RV이 λ™μΌν•œ 뢄포λ₯Ό κ°€μ§€λŠ”μ§€ ν™•μΈν•˜λ €λ©΄, 두 RV의 mgfλ₯Ό 확인해보면 λœλ‹€!


Example.

Q. Let $X$ be a random variable with $M_X(t) = \dfrac{1}{1-2t}$ for $t < \frac{1}{2}$. What is the distribution of $X$?

A. $X \sim \text{Exp}(\lambda = 2)$


Example.

Q. How about $M_X(t) = \dfrac{1}{2} e^t + \dfrac{1}{2} e^{-t}$ for $t \in \mathbb{R}$?

A.

\[\begin{aligned} M_X(t) &= E[e^{tX}] \\ &= \sum e^{tX} \cdot f(x) \\ &= \sum_x e^{tX} \cdot P(X = x) \\ &= e^{1\cdot x} \cdot P(X = 1) + e^{-1\cdot x} \cdot P(X = -1) \\ &= e^{x} \cdot \frac{1}{2} + e^{-x} \cdot \frac{1}{2} \end{aligned}\]

μ΄λ•Œ, μ•„λž˜μ™€ 같은 뢄포λ₯Ό κ°€μ§€λŠ” RV $Y$κ°€ μžˆλ‹€κ³  κ°€μ •ν•˜μž.

\[f(y) := \begin{cases} 1/2 & \text{if} \quad x \pm 1 \\ 0 & \text{else} \end{cases}\]

μ΄λ•Œ, $Y$의 mgfλŠ” $M_Y(t) = \dfrac{1}{2}e^t + \dfrac{1}{2}e^{-t}$이닀.

μœ„μ—μ„œ μ–ΈκΈ‰ν•œ <Uniqueness Theorem for MGF>에 μ˜ν•΄ $X$와 $Y$λŠ” λ™μΌν•œ 뢄포λ₯Ό κ°€μ§„λ‹€. $\blacksquare$


슀포λ₯Ό 쑰금 ν•˜μžλ©΄, <Uniqueness Theorem of MGF>λŠ” λ‚˜μ€‘μ— <Central Limit Theorem>을 증λͺ…ν•  λ•Œ, μ€‘μš”ν•˜κ²Œ μ‚¬μš©λœλ‹€.

πŸ‘‰ Proof of CLT


MGF with Independence

If $X \perp Y$, then

\[M_{X+Y} (t) = M_X(t) \cdot M_Y(t)\]

In general, if $X_1, X_2, \dots, X_n$ are independent,, then

\[M_{X_1 + \cdots + X_n}(t) = M_{X_1} (t) + \cdots + M_{X_n} (t) = \sum^n_{i=1} M_{X_i} (t)\]


Example. Tow Independent BIN

Let $X \sim \text{BIN}(n, p)$ and $Y \sim \text{BIN}(m, p)$, and $X \perp Y$.

Then,

\[X+Y \sim \text{BIN}(n+m, p)\]
\[\begin{aligned} M_{X+Y}(t) &= M_X(t) \cdot M_Y(t) \quad (X \perp Y) \\ &= (pe^t + q)^n \cdot (pe^t + q)^m \\ &= (pe^t + q)^{n+m} \end{aligned}\]

μœ„μ˜ mgfλŠ” κ³§ $\text{BIN}(n+m, p)$의 mgf와 λ™μΌν•˜λ‹€. $\blacksquare$


Example. Two Independent Poi

Let $X \sim \text{Poi}(\lambda)$ and $Y \sim \text{Poi}(\mu)$, and $X \perp Y$.

Then,

\[X+Y \sim \text{Poi}(\lambda + \mu)\]
\[\begin{aligned} M_{X+Y}(t) &= M_X(t) \cdot M_Y(t) \quad (X \perp Y) \\ &= \exp \left( \lambda (e^t - 1) \right) \cdot \exp \left( \mu (e^t - 1) \right) \\ &= \exp \left( (\lambda + \mu) (e^t - 1) \right) \end{aligned}\]

μœ„μ˜ mgfλŠ” κ³§ $\text{Poi}(\lambda + \mu)$의 mgf와 λ™μΌν•˜λ‹€. $\blacksquare$


Example. Two Independent NegBIN

Let $X \sim \text{NegBIN}(r_1, p)$ and $Y \sim \text{NegBIN}(r_2, p)$, and $X \perp Y$.

Then,

\[X+Y \sim \text{NegBIN}(r_1 + r_2, p)\]


Example. Two Independent Normal

Let $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$, and $X \perp Y$.

Then,

\[X+Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)\]
\[\begin{aligned} M_{X+Y}(t) &= M_X(t) \cdot M_Y(t) \quad (X \perp Y) \\ &= \exp \left( \mu_1 t + \frac{\sigma_1^2 t^2}{2} \right) \cdot \exp \left( \mu_2 t + \frac{\sigma_2^2 t^2}{2} \right) \\ &= \exp \left( (\mu_1 + \mu_2) t + \frac{(\sigma^2 + \sigma_2^2) t^2}{2} \right) \end{aligned}\]

μœ„μ˜ mgfλŠ” κ³§ $N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$의 mgf와 λ™μΌν•˜λ‹€. $\blacksquare$


Example. Two Independent Gamma

Let $X \sim \text{Gamma}(\alpha_1, \beta)$ and $Y \sim \text{Gamma}(\alpha_2, \beta)$, and $X \perp Y$.

Then,

\[X+Y \sim \text{Gamma}(\alpha_1 + \alpha_2, \beta)\]

μœ„μ˜ 사싀을 μ΄μš©ν•˜λ©΄, $\text{Exp}$와 $\chi^2$에 λŒ€ν•΄μ„œλ„ two independent 경우λ₯Ό λ…Όν•  수 μžˆλ‹€!

1. If $X \sim \text{Exp}(\beta)$, $Y \sim \text{Exp}(\beta)$ and $X \perp Y$. Then,

\[X + Y \sim \text{Gamma}(2, \beta)\]

β€» $\text{Exp}(\beta) = \text{Gamma}(1, \beta)$


2. If $X \sim \chi^2(n)$, $Y \sim \chi^2(m)$ and $X \perp Y$. Then,

\[X + Y \sim \chi^2(n+m)\]

β€» $\chi^2(n) = \text{Gamma}(n/2, 2)$


Example.

Let $X \sim \text{Exp}(\lambda)$, $Y \sim \text{Exp}(\mu)$ and $X \perp Y$.

Then,

\[Z = \min(X, Y) \sim \text{Exp}(\lambda + \mu)\]

μ—¬κΈ°κΉŒμ§€κ°€ μ •κ·œμˆ˜μ—…μ˜ 쀑간고사 μ‹œν—˜ λ²”μœ„μ΄λ‹€. 개인적으둜 논리λ₯Ό μ „κ°œν•˜λŠ” 뢀뢄은 식을 잘 μ •λ¦¬ν•˜κ³ , 문제λ₯Ό 잘 λͺ¨λΈλ§ν•˜λŠ” 뢀뢄을 μΆ©λΆ„νžˆ μ—°μŠ΅ν•˜λ©΄ 될 것 κ°™λ‹€. λ‹€λ§Œ, 각 λΆ„ν¬μ˜ μ •μ˜μ™€ ν˜•νƒœκ°€ μ‘°κΈˆμ”© ν—·κ°ˆλ €μ„œ μ‹œν—˜ 전에 λͺ¨λ“  뢄포λ₯Ό 빠짐없이 λ‹€ κΈ°μˆ ν•  수 μžˆλŠ”μ§€ λ°±μ§€(η™½η΄™)에 체크해보면 쒋을 것 κ°™λ‹€.