2019-2ν•™κΈ°, λŒ€ν•™μ—μ„œ 듀은 β€˜λ―ΈλΆ„λ°©μ •μ‹β€™ μˆ˜μ—…μ„ λ³΅μŠ΅ν•˜λŠ” μ°¨μ›μ—μ„œ μ •λ¦¬ν•˜κ²Œ 된 κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

9 minute read

2019-2ν•™κΈ°, λŒ€ν•™μ—μ„œ 듀은 β€˜λ―ΈλΆ„λ°©μ •μ‹β€™ μˆ˜μ—…μ„ λ³΅μŠ΅ν•˜λŠ” μ°¨μ›μ—μ„œ μ •λ¦¬ν•˜κ²Œ 된 κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

사싀 μ •κ·œ μˆ˜μ—…μ—μ„œ 닀룬 λ‚΄μš©μ€ μ•„λ‹ˆκ³ , <푸리에 λ³€ν™˜>을 κ³΅λΆ€ν•˜λ‹€λ³΄λ‹ˆ 이 뢀뢄이 ν•„μš”ν•΄μ„œ μ •λ¦¬ν•˜κ²Œ λ˜μ—ˆλ‹€ πŸ˜†

<푸리에 λ³€ν™˜>을 κΈ°μˆ ν•  λ•Œ 주둜 이 λ³΅μ†Œμ§€μˆ˜ ν˜•νƒœλ₯Ό μ‚¬μš©ν•˜κΈ° λ•Œλ¬Έμ—, <푸리에 λ³€ν™˜>을 κ³΅λΆ€ν•˜λ €λ©΄ 이 뢀뢄을 κΌ­ μ•Œκ³  μžˆμ–΄μ•Ό ν•œλ‹€ 🀯

$$ e^{i\theta} = \cos \theta + i \sin \theta $$

이번 ν¬μŠ€νŠΈμ—μ„œ μš°λ¦¬μ—κ²Œ ν•„μš”ν•œ λ„κ΅¬λŠ” <였일러 곡식>, 단 ν•˜λ‚˜λ©΄ μΆ©λΆ„ν•˜λ‹€ 😎

λ¨Όμ €, <푸리에 κΈ‰μˆ˜>의 μ‚Όκ°ν•¨μˆ˜ ν˜•νƒœλ₯Ό κΈ°μˆ ν•˜λ©΄ μ•„λž˜μ™€ κ°™λ‹€.

\[f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left( a_m \cos \frac{m\pi x}{L} + b_m \sin \frac{m\pi x}{L} \right)\]

μ‹œμž‘ν•˜κΈ° 전에 μœ„μ˜ ν˜•νƒœλ₯Ό μ•½κ°„ 닀듬어야 ν•œλ‹€. μœ„μ˜ μ‹μ—μ„œ $\pi / L$λ₯Ό 주파수 $\omega$둜 λŒ€μ²΄ν•œλ‹€.

\[f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left( a_m \cos m \omega x + b_m \sin m \omega x \right)\]

사싀 아이디어 μžμ²΄λŠ” κ°„λ‹¨ν•˜λ‹€. μ‚Όκ°ν•¨μˆ˜ $\cos$, $\sin$λ₯Ό μ§€μˆ˜ ν˜•νƒœλ‘œ ν‘œν˜„ν•œ 후에 <푸리에 κΈ‰μˆ˜>에 λŒ€μž…ν•΄μ£ΌκΈ°λ§Œ ν•˜λ©΄ λœλ‹€. λ³΅μ†Œν•¨μˆ˜λ‘ (MATH210)을 λ“€μ—ˆλ‹€λ©΄, 곡식은 μ‰½κ²Œ μœ λ„ν•  수 μžˆμ„ 것이닀.

\[\cos \theta = \frac{1}{2} (e^{i\theta} + e^{-i\theta})\] \[\sin \theta = \frac{1}{2i} (e^{i\theta} - e^{-i\theta})\]

이제 μœ„μ˜ 곡식에 따라 <푸리에 κΈ‰μˆ˜>의 식에 μ§€μˆ˜ν•¨μˆ˜λ₯Ό λŒ€μž…ν•΄μ£Όμž!!

\[\begin{aligned} &\frac{a_0}{2} + \sum_{m=1}^{\infty} \left( a_m \cos m \omega x + b_m \sin m \omega x \right) \\ &= \frac{a_0}{2} + \sum_{m=1}^{\infty} \left( a_m \cdot \frac{1}{2} (e^{im\omega x} + e^{-im\omega x}) + b_m \cdot \frac{1}{2i} (e^{im\omega x} - e^{-im\omega x}) \right) \end{aligned}\]

μœ„μ˜ μ‹μ—μ„œ μ§€μˆ˜ν•¨μˆ˜λ₯Ό κΈ°μ€€μœΌλ‘œ 식을 λ¬Άμ–΄μ£Όμž.

\[\begin{aligned} &= \frac{a_0}{2} + \sum_{m=1}^{\infty} \left( a_m \cdot \frac{1}{2} (e^{im\omega x} + e^{-im\omega x}) + b_m \cdot \frac{1}{2i} (e^{im\omega x} - e^{-im\omega x}) \right) \\ &= \frac{a_0}{2} + \sum_{m=1}^{\infty} \left( \left(\frac{a_m}{2} + \frac{b_m}{2i}\right) \cdot e^{im\omega x} + \left(\frac{a_m}{2} - \frac{b_m}{2i}\right) \cdot e^{-im\omega x} \right) \\ &= \frac{a_0}{2} + \sum_{m=1}^{\infty} \left( \frac{1}{2} \left( a_m - ib_m \right) \cdot e^{im\omega x} + \frac{1}{2} \left( a_m + ib_m \right) \cdot e^{-im\omega x} \right) \\ \end{aligned}\]

일단 μ—¬κΈ°κΉŒμ§€ 식을 μ „κ°œν•΄λ‘μž. λ‚˜μ€‘μ— λ‹€μ‹œ λ°©λ¬Έν•  μ˜ˆμ •μ΄λ‹ˆ μ‹μ˜ ν˜•νƒœλŠ” κΈ°μ–΅ν•΄λ‘μž.

μ΄λ²ˆμ—λŠ” <푸리에 κΈ‰μˆ˜>의 κ³„μˆ˜μ— λŒ€ν•œ 식을 λ³΅μ†Œμ§€μˆ˜ ν˜•νƒœλ‘œ ν‘œν˜„ν•΄λ³΄μž.

1. $a_0$

λ°”κΏ€κ²Œ μ—†λ‹€.

\[a_0 = \frac{1}{L} \int_{-L}^L f(x) \; dx\]

2. $a_n$

\[\begin{aligned} a_n &= \frac{1}{L} \int_{-L}^L f(x) \cos m \omega x \; dx \\ &= \frac{1}{L} \int_{-L}^L f(x) \frac{1}{2} (e^{im\omega x} + e^{-im\omega x}) \; dx \\ &= \frac{1}{2L} \int_{-L}^L f(x) e^{im\omega x} \; dx + \frac{1}{2L} \int_{-L}^L f(x) e^{-im\omega x} \; dx \end{aligned}\]

3. $b_n$

λ§ˆμ°¬κ°€μ§€λ‘œ

\[b_n = \frac{1}{2iL} \int_{-L}^L f(x) e^{im\omega x} \; dx - \frac{1}{2iL} \int_{-L}^L f(x) e^{-im\omega x} \; dx\]

μœ„μ˜ ν˜•νƒœλ³΄λ‹€λŠ” μ•„λž˜μ˜ ν˜•νƒœκ°€ 더 μ„ ν˜Έλœλ‹€.

\[i b_n = \frac{1}{2L} \int_{-L}^L f(x) e^{im\omega x} \; dx - \frac{1}{2L} \int_{-L}^L f(x) e^{-im\omega x} \; dx\]

$a_n$κ³Ό $ib_n$ μ΅μˆ™ν•˜μ§€ μ•Šμ€κ°€? μš°λ¦¬κ°€ <푸리에 κΈ‰μˆ˜>λ₯Ό λ³΅μ†Œμ§€μˆ˜ ν˜•νƒœλ‘œ λ³€ν™˜ ν–ˆμ„ λ•Œ λ³Έ κ³„μˆ˜ 뢀뢄이닀!! μœ„μ—μ„œ 얻은 푸리에 κ³„μˆ˜λ₯Ό 식에 λŒ€μž…ν•΄λ³΄μž!


\[f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left( \frac{1}{2} \left( a_m - ib_m \right) \cdot e^{im\omega x} + \frac{1}{2} \left( a_m + ib_m \right) \cdot e^{-im\omega x} \right)\]

1. $(a_n - ib_n) / 2$

\[\begin{aligned} \frac{1}{2} \left( a_n - ib_n \right) &= \frac{1}{2} \cdot 2 \cdot \frac{1}{2L} \int_{-L}^L f(x) e^{-in\omega x} \; dx \\ &= \frac{1}{2L} \int_{-L}^L f(x) e^{-in\omega x} \; dx \end{aligned}\]

2. $(a_n + ib_n) / 2$

\[\begin{aligned} \frac{1}{2} \left( a_n + ib_n \right) &= \frac{1}{2} \cdot 2 \cdot \frac{1}{2L} \int_{-L}^L f(x) e^{in\omega x} \; dx \\ &= \frac{1}{2L} \int_{-L}^L f(x) e^{in\omega x} \; dx \end{aligned}\]

μ΄λ²ˆμ—” [1, 2]μ—μ„œ 얻은 두 식을 $A_n$, $B_n$으둜 μΉ˜ν™˜ν•˜μž. 그러면, 전체 식은 μ•„λž˜μ™€ 같이 λ³€ν•œλ‹€.

\[\begin{aligned} f(x) &= \frac{a_0}{2} + \sum_{m=1}^{\infty} \left( A_m \cdot e^{im\omega x} + B_m \cdot e^{-im\omega x} \right) \\ &\text{where} \\ a_0 &= \frac{1}{L} \int_{-L}^L f(x) \; dx \\ A_n &= \frac{1}{2L} \int_{-L}^L f(x) e^{-in\omega x} \; dx \\ B_n &= \frac{1}{2L} \int_{-L}^L f(x) e^{in\omega x} \; dx \\ \end{aligned}\]

μ΄λ•Œ, λ”°λ‘œ λ–¨μ–΄μ Έ μžˆλŠ” $a_0$λ₯Ό $A_n$의 μ‹μœΌλ‘œ ν†΅ν•©ν•˜μž.

\[a_0 = A_0 = \frac{1}{2L} \int_{-L}^L f(x) e^{0} \; dx\]

그러면,

\[f(x) = \sum_{m=0}^{\infty} A_m \cdot e^{im\omega x} + \sum_{m=1}^{\infty} B_m \cdot e^{-im\omega x}\]

μœ„μ˜ μ‹μ—μ„œ 더 κ°„λ‹¨ν•˜κ²Œ λ§Œλ“€ 수 μžˆλ‹€! 😲 $A_m$κ³Ό $B_m$을 ν•˜λ‚˜λ‘œ ν•©μ³λ³΄μž!

μ‹μ—μ„œ $A_n$에 λŒ€ν•œ 뢀뢄합은 $0$λΆ€ν„° $\infty$κΉŒμ§€, $B_n$에 λŒ€ν•œ 뢀뢄합은 $1$λΆ€ν„° $\infty$κΉŒμ§€ μˆ˜ν–‰ν•œλ‹€. μ΄λ•Œ, $B_n$에 λŒ€ν•œ 뢀뢄을 $1$λΆ€ν„°κ°€ μ•„λ‹ˆλΌ $-1$λΆ€ν„° $-\infty$κΉŒμ§€ μˆ˜ν–‰ν•˜λ„λ‘ 식을 λ°”κΏ€ 수 μžˆλ‹€!

\[\begin{aligned} \sum_{m=1}^{\infty} B_m \cdot e^{-im\omega x} &= \sum_{m=-1}^{-\infty} B_{-m} \cdot e^{-i(-m)\omega x} \\ &= \sum_{m=-1}^{-\infty} B_{-m} \cdot e^{im\omega x} \end{aligned}\]

μ΄λ•Œ, $B_{-n}$은

\[\begin{aligned} B_n &= \frac{1}{2L} \int_{-L}^L f(x) e^{in\omega x} \; dx \\ B_{-n} &= \frac{1}{2L} \int_{-L}^L f(x) e^{i(-n)\omega x} \; dx \\ &= \frac{1}{2L} \int_{-L}^L f(x) e^{-in\omega x} \; dx \\ &= A_n \end{aligned}\]

즉, $B_{-n}$은 곧 $A_n$이닀. λ”°λΌμ„œ,

\[\sum_{m=1}^{\infty} B_m \cdot e^{-im\omega x} = \sum_{m=-1}^{-\infty} A_m \cdot e^{im\omega x}\]

이제 <푸리에 κΈ‰μˆ˜>에 λŒ€ν•œ 식을 μ΅œμ’…μ μœΌλ‘œ κΈ°μˆ ν•˜λ©΄ μ•„λž˜μ™€ κ°™λ‹€.

\[f(x) = \sum_{-\infty}^{\infty} C_m \cdot e^{im\omega x}\]

λΆ€λΆ„ν•©μ˜ λ²”μœ„κ°€ $-\infty$λΆ€ν„° $\infty$κΉŒμ§€λ‘œ λ°”λ€Œμ—ˆμŒμ„ κ°•μ‘°ν•˜κΈ° μœ„ν•΄ κ³„μˆ˜λ₯Ό $A_n$μ—μ„œ $C_n$으둜 λ°”κΎΈμ–΄ 쀬닀. 식 μžμ²΄λŠ” λ™μΌν•˜λ‹€.


λ§ˆμ§€λ§‰μœΌλ‘œ μ‚Όκ°ν•¨μˆ˜ ν˜•νƒœμ™€ λ³΅μ†Œμ§€μˆ˜ ν˜•νƒœλ₯Ό λΉ„κ΅ν•΄λ³΄μž.

1. 푸리에 κΈ‰μˆ˜ (μ‚Όκ°ν•¨μˆ˜)

\[\begin{aligned} f(x) &= \frac{a_0}{2} + \sum_{m=1}^{\infty} \left( a_m \cos m \omega x + b_m \sin m \omega x \right) \\ &\text{where} \\ a_0 &= \frac{1}{L} \int_{-L}^L f(x) \; dx \\ a_n &= \frac{1}{L} \int_{-L}^L f(x) \cos n \omega x \; dx \\ b_n &= \frac{1}{L} \int_{-L}^L f(x) \sin n \omega x \; dx \\ \end{aligned}\]

2. 푸리에 κΈ‰μˆ˜ (λ³΅μ†Œμ§€μˆ˜)

\[\begin{aligned} f(x) &= \sum_{-\infty}^{\infty} C_m \cdot e^{im\omega x} \\ &\text{where} \\ C_n &= \frac{1}{2L} \int_{-L}^L f(x) e^{-in\omega x} \; dx \end{aligned}\]

푸리에 κΈ‰μˆ˜λ₯Ό λ³΅μ†Œμ§€μˆ˜ ν˜•νƒœλ‘œ ν‘œν˜„ν•˜κΈ° λ˜λ©΄μ„œ, 푸리에 κΈ‰μˆ˜λ₯Ό λ³΅μ†Œμ›(complex circle)의 λͺ¨μŒμœΌλ‘œ 해석해볼 μˆ˜λ„ μžˆλ‹€!! 😲 β€˜heejin_parkβ€™λ‹˜μ˜ ν¬μŠ€νŠΈμ—μ„œ 이 뢀뢄을 잘 μ„€λͺ…ν•˜κ³  μžˆμ–΄ 링크λ₯Ό 달아둔닀.

πŸ‘‰ β€˜heejin_parkβ€™λ‹˜μ˜ 포슀트: 푸리에 κΈ‰μˆ˜μ˜ μ‚Όκ°ν•¨μˆ˜ ν‘œν˜„ vs. λ³΅μ†Œμ§€μˆ˜ ν‘œν˜„


<푸리에 λ³€ν™˜>은 <푸리에 κΈ‰μˆ˜>μ—μ„œ μ£ΌκΈ° $L$을 λ¬΄ν•œλŒ€λ‘œ κ·Ήν•œμ„ μ·¨ν•΄ μ‰½κ²Œ 얻을 수 μžˆλ‹€. μžμ„Έν•œ λ‚΄μš©μ€ μ•„λž˜μ˜ ν¬μŠ€νŠΈμ—μ„œ ν™•μΈν•΄λ³΄μž.

πŸ‘‰ Fourier Transform


reference