Zipper theorem ๐Ÿค, Cantor Set, Cauchy Condesnation Test

6 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ณต๋ถ€ํ•˜๋ฉด์„œ ์žฌ๋ฐŒ์–ด ๋ณด์˜€๋˜ ๋ฌธ์ œ๋“ค๊ณผ ํ’€์ด๋“ค์„ ๋ชจ์•„์„œ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ ์ž…๋‹ˆ๋‹ค. ๋ฏธ์ ๋ถ„ํ•™ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

The zipper theorem

If ${ a_n }$ and ${ b_n }$ both converge to $L$, then the sequence

\[a_1, b_1, a_2, b_2, ..., a_n, b_n, ...\]

converges to $L$.

์ผ๋‹จ zipper ์ˆ˜์—ด์„ ์ •์˜ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[c_n = \begin{cases} a_n & n \text{ is odd} \\ b_n & n \text{ is even} \\ \end{cases}\]

์ด์ œ $n$์ด ํ™€์ˆ˜/์ง์ˆ˜์ธ ๊ฒฝ์šฐ๋ฅผ ์ƒ๊ฐํ•ด๋ณด์ž.

<$n = 2m + 1$: odd>

\[\lim_{m \rightarrow \infty} c_{2m + 1} = \lim_{m \rightarrow \infty} a_m = L\]

<$n = 2m$: even>

\[\lim_{m \rightarrow \infty} c_{2m} = \lim_{m \rightarrow \infty} b_m = L\]

์ฆ‰, ํ™€์ˆ˜/์ง์ˆ˜ ๋‘ ๊ฒฝ์šฐ์— ๋Œ€ํ•ด์„œ ๋‘˜๋‹ค ๊ทนํ•œ์ด $L$๋กœ ์ˆ˜๋ ดํ•˜๋ฏ€๋กœ zipper ์ˆ˜์—ด๋„ ์ˆ˜๋ ดํ•œ๋‹ค.

A recursive definition of $\pi/2$

If you start with $x_1 = 1$ and define the subsequent terms of ${ x_n }$ by the rule $x_n = x_{n-1} + \cos x_{n-1}$, then show the sequence converges rapidly to $\pi/2$.

Thomas Calculus 13th ed. - Example Problem

์—ฐ์Šต๋ฌธ์ œ์—์„  ์ˆ˜์—ด์„ ${ x_n }$์œผ๋กœ ํ‘œํ˜„ํ–ˆ๋Š”๋ฐ, ์ข€๋” ์ดํ•ด๊ฐ€ ์‰ฝ๋„๋ก ${ \theta_n }$์œผ๋กœ ๋ฐ”๊ฟ”์„œ ํ‘œํ˜„ํ•˜๊ฒ ๋‹ค.

์ผ๋‹จ ์œ„์˜ ๋‹ค์ด์–ด๊ทธ๋žจ ์ƒ์œผ๋กœ $\theta_n$์˜ ๊ฐ’์€ ํŒŒ๋ž€ ์„ ์œผ๋กœ ๊ทธ๋ ค์ง„๋‹ค. ์ด๊ฒƒ์€ (1) ํ˜ธ์˜ ๊ธธ์ด์™€ (2) x์ถ•์— ํ‰ํ–‰์ธ ์„ ๋ถ„์œผ๋กœ ์ด๋ค„์ง€๋Š”๋ฐ,

  • (1) ๋‹จ์œ„์› ์œ„์—์„œ ๊ฐ $\theta_{n-1}$๊ฐ€ ์ด๋ฃจ๋Š” ํ˜ธ์˜ ๊ธธ์ด๊ฐ€ $1 \cdot \theta_{n-1}$์ด ๋˜๊ณ ,
  • (2) x์ถ•์— ๋Œ€ํ•œ ์ •์‚ฌ์˜ํ•œ ๊ธธ์ด๊ฐ€ $\cos \theta_{n-1}$์ด ๋˜๋Š” ๊ฒƒ์ด๋‹ค.

์ด๋•Œ, ๋นจ๊ฐ„์„ ์œผ๋กœ ๊ทธ๋ ค์ง„ ๋ถ€๋ถ„์— ์ฃผ๋ชฉํ•ด๋ณด์ž. ์ •์‚ฌ์˜ํ•œ ๊ธธ์ด (2)์™€ ๋‚จ์€ ๊ฐ์ธ $\pi/2 - \theta_{n-1}$๋กœ ๋งŒ๋“  ํ˜ธ์˜ ๊ธธ์ด ์‚ฌ์ด์— ์•„๋ž˜์˜ ๋ถ€๋“ฑ์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

\[\cos \theta_{n-1} < \pi/2 - \theta_{n-1}\]

์ด ๋ถ€๋“ฑ์‹์—์„œ $\theta_{n-1}$์— ๋Œ€ํ•œ ๋ถ€๋ถ„์„ ์ •๋ฆฌํ•˜๋ฉด,

\[\begin{aligned} \theta_{n-1} + \cos \theta_{n-1} &< \pi/2 \\ \theta_n &< \pi / 2 \end{aligned}\]

์ฆ‰, ์ˆ˜์—ด ${ \theta_n }$์˜ upper bound๊ฐ€ $\pi/2$์ž„์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค! ์ด๋•Œ, ์ˆ˜์—ด ${ \theta_n }$๋Š” ์ฆ๊ฐ€ ์ˆ˜์—ด์ธ๋ฐ, ๊ทธ ์ด์œ ๋Š” $\theta_n < \pi/2$์ด๊ธฐ ๋•Œ๋ฌธ์— $0 < \cos \theta_n \le 1$ ๋ฒ”์œ„๋ฅผ ๊ฐ–๊ฒŒ ๋˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค!

์ฆ‰, ์ˆ˜์—ด ${ \theta_n }$์ด ์ฆ๊ฐ€์ˆ˜์—ด์ด๊ณ , ์ƒ๊ณ„๋ฅผ ๊ฐ€์ง€๊ธฐ ๋•Œ๋ฌธ์— โ€œ๋‹จ์กฐ์ˆ˜๋ ด์ •๋ฆฌโ€์— ์˜ํ•ด์„œ ์ˆ˜์—ด ${ \theta_n }$์ด ์ˆ˜๋ ดํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ทธ ์ˆ˜๋ ด๊ฐ’์€ least upper bound์ธ $\pi/2$๊ฐ€ ๋œ๋‹ค. $\blacksquare$

The Cantor set

Cantor set in seven iterations

๋‹ซํžŒ ๊ตฌ๊ฐ„ $[0, 1]$์„ 3๋“ฑ๋ถ„ ํ•˜์ž. ๊ฐ€์šด๋ฐ์ธ $(1/3, 2/3)$ ๊ตฌ๊ฐ„์„ ์ œ๊ฑฐํ•œ๋‹ค. 1/3 ๊ธธ์ด์˜ ๋‚จ์€ ๋‘ ๊ตฌ๊ฐ„์— ๋Œ€ํ•ด์„œ๋„ ๊ฐ™์€ ์ž‘์—…์„ ํ•˜์—ฌ ๊ฐ€์šด๋ฐ ๊ตฌ๊ฐ„์„ ์ œ๊ฑฐํ•œ๋‹ค. ์ด ๊ณผ์ •์„ ๋ฌดํ•œ๋ฒˆ ๋ฐ˜๋ณตํ•œ๋‹ค.

์ž์„ธํ•œ ๋‚ด์šฉ์€ ๋ณ„๋„์˜ ๋ธ”๋กœ๊ทธ ํฌ์ŠคํŠธ์— ์ ์–ด๋’€๋‹ค. ๋งํฌ

The Cauchy condensation test

Let ${ a_n }$ be a non-increasing sequence of positive terms that converges to $0$. Then $\sum a_n$ converges if and only if $\sum 2^n a_{2^n}$ converges.

For example, $\sum (1/n)$ diverges because $\sum 2^n \cdot (1/2^n) = \sum 1$ diverges.

์ด๋•Œ, โ€œcondensationโ€์€ ์‘์ถ•์ด๋ผ๋Š” ๋œป์ด๋‹ค. ์ฆ‰, ๊ธฐ์กด์˜ ๊ธ‰์ˆ˜๋ฅผ ์‘์ถ•ํ•œ ๊ธ‰์ˆ˜์˜ ์ˆ˜๋ ด/๋ฐœ์‚ฐ์„ ํŒ์ •ํ•˜๋Š” ๊ฒƒ๋งŒ์œผ๋กœ๋„ ๊ธฐ์กด ๊ธ‰์ˆ˜์˜ ์ˆ˜๋ ด/๋ฐœ์‚ฐ์„ ํŒ์ •ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ •๋ฆฌ๋‹ค.

Show $\sum a_n$ converges, then $\sum 2^n a_{2^n}$.

because, $a_n$ is non-increasing and positive sequence, blow inequality satisfies.

\[\begin{aligned} &a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + \dots \\ &\ge a_1 + a_2 + (a_4 + a_4) + (a_8 + a_8 + a_8 + a_8) + \dots \\ &= a_1 + a_2 + 2 \cdot (a_4) + 2^2 \cdot (a_8) + \dots \\ &= a_1 + \sum 2^{n-1} a_{2^n} \end{aligned}\]

Due to upper bound $\sum a_n$ converges, so $a_1 + \sum 2^{n-1} a_{2^n}$ converges too. And, $\sum 2^{n-1} a_{2^n}$ converges, $\sum 2^n a_{2^n}$ converges also! $\blacksquare$

Show $\sum 2^n a_{2^n}$ converges, then $\sum a_n$.

์ด๋ฒˆ์—๋Š” ์‹์„ ๋‹ค๋ฅด๊ฒŒ ๋ฌถ์–ด์„œ ๋ถ€๋“ฑ์‹ ๋ฐฉํ–ฅ์„ ๋ฐ”๊พธ๋ฉด ๋œ๋‹ค!

because, $a_n$ is non-increasing and positive sequence, blow inequality satisfies.

\[\begin{aligned} &a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + \dots \\ &\le a_1 + (a_2 + a_2) + (a_4 + a_4 + a_4 + a_4) + (a_8 + \dots) \\ &= a_1 + 2 \cdot (a_2) + 2^2 \cdot (a_4) + \dots \\ &= a_1 + \sum 2^n a_{2^n} \end{aligned}\]

Due to upper bound $\sum 2^n a_{2^n}$ converges, so $\sum a_n$ converges too! $\blacksquare$

Categories:

Updated: