Sequence and Series: Problem Solving
볡μμ 곡νκ³ μλ μνκ³Όμ μ‘Έμ μνμ μν΄ νλΆ μν κ³Όλͺ©λ€μ λ€μ 곡λΆνκ³ μμ΅λλ€. 곡λΆνλ©΄μ μ¬λ°μ΄ 보μλ λ¬Έμ λ€κ³Ό νμ΄λ€μ λͺ¨μμ μ 리ν ν¬μ€νΈ μ λλ€. λ―Έμ λΆν ν¬μ€νΈ μ 체 보기
The zipper theorem
If ${ a_n }$ and ${ b_n }$ both converge to $L$, then the sequence
\[a_1, b_1, a_2, b_2, ..., a_n, b_n, ...\]converges to $L$.
μΌλ¨ zipper μμ΄μ μ μνλ©΄ μλμ κ°λ€.
\[c_n = \begin{cases} a_n & n \text{ is odd} \\ b_n & n \text{ is even} \\ \end{cases}\]μ΄μ $n$μ΄ νμ/μ§μμΈ κ²½μ°λ₯Ό μκ°ν΄λ³΄μ.
<$n = 2m + 1$: odd>
\[\lim_{m \rightarrow \infty} c_{2m + 1} = \lim_{m \rightarrow \infty} a_m = L\]<$n = 2m$: even>
\[\lim_{m \rightarrow \infty} c_{2m} = \lim_{m \rightarrow \infty} b_m = L\]μ¦, νμ/μ§μ λ κ²½μ°μ λν΄μ λλ€ κ·Ήνμ΄ $L$λ‘ μλ ΄νλ―λ‘ zipper μμ΄λ μλ ΄νλ€.
A recursive definition of $\pi/2$
If you start with $x_1 = 1$ and define the subsequent terms of ${ x_n }$ by the rule $x_n = x_{n-1} + \cos x_{n-1}$, then show the sequence converges rapidly to $\pi/2$.
μ°μ΅λ¬Έμ μμ μμ΄μ ${ x_n }$μΌλ‘ νννλλ°, μ’λ μ΄ν΄κ° μ½λλ‘ ${ \theta_n }$μΌλ‘ λ°κΏμ νννκ² λ€.
μΌλ¨ μμ λ€μ΄μ΄κ·Έλ¨ μμΌλ‘ $\theta_n$μ κ°μ νλ μ μΌλ‘ κ·Έλ €μ§λ€. μ΄κ²μ (1) νΈμ κΈΈμ΄μ (2) xμΆμ ννμΈ μ λΆμΌλ‘ μ΄λ€μ§λλ°,
- (1) λ¨μμ μμμ κ° $\theta_{n-1}$κ° μ΄λ£¨λ νΈμ κΈΈμ΄κ° $1 \cdot \theta_{n-1}$μ΄ λκ³ ,
- (2) xμΆμ λν μ μ¬μν κΈΈμ΄κ° $\cos \theta_{n-1}$μ΄ λλ κ²μ΄λ€.
μ΄λ, λΉ¨κ°μ μΌλ‘ κ·Έλ €μ§ λΆλΆμ μ£Όλͺ©ν΄λ³΄μ. μ μ¬μν κΈΈμ΄ (2)μ λ¨μ κ°μΈ $\pi/2 - \theta_{n-1}$λ‘ λ§λ νΈμ κΈΈμ΄ μ¬μ΄μ μλμ λΆλ±μμ΄ μ±λ¦½νλ€.
\[\cos \theta_{n-1} < \pi/2 - \theta_{n-1}\]μ΄ λΆλ±μμμ $\theta_{n-1}$μ λν λΆλΆμ μ 리νλ©΄,
\[\begin{aligned} \theta_{n-1} + \cos \theta_{n-1} &< \pi/2 \\ \theta_n &< \pi / 2 \end{aligned}\]μ¦, μμ΄ ${ \theta_n }$μ upper boundκ° $\pi/2$μμ μ μ μλ€! μ΄λ, μμ΄ ${ \theta_n }$λ μ¦κ° μμ΄μΈλ°, κ·Έ μ΄μ λ $\theta_n < \pi/2$μ΄κΈ° λλ¬Έμ $0 < \cos \theta_n \le 1$ λ²μλ₯Ό κ°κ² λκΈ° λλ¬Έμ΄λ€!
μ¦, μμ΄ ${ \theta_n }$μ΄ μ¦κ°μμ΄μ΄κ³ , μκ³λ₯Ό κ°μ§κΈ° λλ¬Έμ βλ¨μ‘°μλ ΄μ 리βμ μν΄μ μμ΄ ${ \theta_n }$μ΄ μλ ΄νλ€. κ·Έλ¦¬κ³ κ·Έ μλ ΄κ°μ least upper boundμΈ $\pi/2$κ° λλ€. $\blacksquare$
The Cantor set
λ«ν κ΅¬κ° $[0, 1]$μ 3λ±λΆ νμ. κ°μ΄λ°μΈ $(1/3, 2/3)$ ꡬκ°μ μ κ±°νλ€. 1/3 κΈΈμ΄μ λ¨μ λ ꡬκ°μ λν΄μλ κ°μ μμ μ νμ¬ κ°μ΄λ° ꡬκ°μ μ κ±°νλ€. μ΄ κ³Όμ μ 무νλ² λ°λ³΅νλ€.
μμΈν λ΄μ©μ λ³λμ λΈλ‘κ·Έ ν¬μ€νΈμ μ μ΄λλ€. λ§ν¬
The Cauchy condensation test
Let ${ a_n }$ be a non-increasing sequence of positive terms that converges to $0$. Then $\sum a_n$ converges if and only if $\sum 2^n a_{2^n}$ converges.
For example, $\sum (1/n)$ diverges because $\sum 2^n \cdot (1/2^n) = \sum 1$ diverges.
μ΄λ, βcondensationβμ μμΆμ΄λΌλ λ»μ΄λ€. μ¦, κΈ°μ‘΄μ κΈμλ₯Ό μμΆν κΈμμ μλ ΄/λ°μ°μ νμ νλ κ²λ§μΌλ‘λ κΈ°μ‘΄ κΈμμ μλ ΄/λ°μ°μ νμ ν μ μλ€λ μ 리λ€.
Show $\sum a_n$ converges, then $\sum 2^n a_{2^n}$.
because, $a_n$ is non-increasing and positive sequence, blow inequality satisfies.
\[\begin{aligned} &a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + \dots \\ &\ge a_1 + a_2 + (a_4 + a_4) + (a_8 + a_8 + a_8 + a_8) + \dots \\ &= a_1 + a_2 + 2 \cdot (a_4) + 2^2 \cdot (a_8) + \dots \\ &= a_1 + \sum 2^{n-1} a_{2^n} \end{aligned}\]Due to upper bound $\sum a_n$ converges, so $a_1 + \sum 2^{n-1} a_{2^n}$ converges too. And, $\sum 2^{n-1} a_{2^n}$ converges, $\sum 2^n a_{2^n}$ converges also! $\blacksquare$
Show $\sum 2^n a_{2^n}$ converges, then $\sum a_n$.
μ΄λ²μλ μμ λ€λ₯΄κ² λ¬Άμ΄μ λΆλ±μ λ°©ν₯μ λ°κΎΈλ©΄ λλ€!
because, $a_n$ is non-increasing and positive sequence, blow inequality satisfies.
\[\begin{aligned} &a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + \dots \\ &\le a_1 + (a_2 + a_2) + (a_4 + a_4 + a_4 + a_4) + (a_8 + \dots) \\ &= a_1 + 2 \cdot (a_2) + 2^2 \cdot (a_4) + \dots \\ &= a_1 + \sum 2^n a_{2^n} \end{aligned}\]Due to upper bound $\sum 2^n a_{2^n}$ converges, so $\sum a_n$ converges too! $\blacksquare$