Calculus
๋ณต์์ ๊ณตํ๊ณ ์๋ ์ํ๊ณผ์ ํ๋ถ ์กธ์ ์ํ์ ์ํด 2024๋ 5์๋ถํฐ 2024๋ 7์๊น์ง ๋ฏธ์ ๋ถํ 1ยท2๋ฅผ ๋ค์ ๊ณต๋ถ ํ์ต๋๋ค. ๋ค์ ๊ณต๋ถ๋ฅผ ํ๋ฉด์, ๊ต์ฌ ์ฐ์ต ๋ฌธ์ ์ค์ ์ฌ๋ฐ์๋ ๋ฌธ์ ๋ค๊ณผ ํท๊ฐ๋ฆฌ๋ ๊ฐ๋ ๋ค์ ์ ๋ฆฌํด๋ณด์์ต๋๋ค.
๊ณต๋ถ๋ฅผ ๋ง์น๊ณ ๋์๋ โ๋ฏธ์ ๋ถํ์ ๋ค์ ๊ณต๋ถํ๋ฉฐ ๋ ์๊ฐ๋คโ๋ผ๋ ์ ๋ชฉ์ผ๋ก ๊ฐ๋จํ ํ๊ณ ๋ ์์ฑํด๋ณด์์ต๋๋ค ๐
์ฐธ๊ณ ์๋ฃ ๋ฐ ์์
- James Stewart - Calculus 8th ed. Early Transcendentals
- George B. Thomas, Jr. - Calculus 13th ed. Early Transcendentals
- Gilbert Strang - Calculus (Open TextBook)
- Joel Feldman - CLP Calculus (Open TextBook)
- APEX Calculus (Open TextBook)
Calculus 1
- Limit and Continuity: Problem Solving
- ์ ๋ธ ๋ ผ๋ฒ์ด ์๋ฆฝ๋ ๊ณผ์
- A Fixed point Theorem
- Assigning a value to zero power of zero $0^0$
- Derivatives: Problem Solving
- ๋ชจ๋ ์ ์์ ๋ฏธ๋ถ ๋ถ๊ฐ๋ฅํ ์ฐ์ ํจ์
- The cissoid of Diocles
- Newtonโs Serpentine
- Application of Derivatives: Problem Solving
- Geometric Mean
- Cauchyโs Mean Value Theorem
- Proof of lโhรดpitalโs rule
- Techniques of Integrals: Problem Solving
- Equivalence of the washer and shell methods
- Taylor Series & Macluarin Series
- ๊ธ์์ ๊ทนํ์ ํ์ ํ๋ ๋ฒ
- ๊ต๋ ๊ธ์์ ๊ทนํ์ ํ์ ํ๋ ๋ฒ
- ์ ๋ ์๋ ด๊ณผ ์กฐ๊ฑด๋ถ ์๋ ด
- ๋ฆฌ๋ง ์ฌ๋ฐฐ์ด ์ ๋ฆฌ
- Sequence and Series: Problem Solving
- The zipper theorem
- A recurive definition of $\pi/2$
- The Cantor Set
- The Cauchy condensation test
Calculus 2
- Parametric Equations: Problem Solving
- The witch of Maria Agnesi
- Hypocycloid
- Trochoids
- Limaรงon Curve
- Lissajous Curve
- Nephroid
- Strophoid
- The nephroid of Freeth
- Vectors and Space: Problem Solving
- Partial Derivatives and Differentiability
- Lagrange Multiplier
- Constrained Maxima/minima
- Lagrange Method with Two Constraints
- Multiple Integrals
- Fubiniโs Theorem
- Jacobian
- Vector Fields
- Gradient Fields $\nabla f$
- Conservative Vector Field, and Potential Function
- Arc Length์ Line Integral
- Fundamental Theorem for Line Integrals
- Work done by Gravitational Field
- Independent of Path
- On a Closed Curve
- Green Theorem
- Curve Orientation: CCW is positive orientation
- Curve Boundary
- Green Theorem on Not simply-connected(= General Region)
- Divergence and Curl
- Divergence $\nabla \cdot \mathbf{F}$
- Curl $\nabla \times \mathbf{F}$
- Laplace Operator $\nabla^2$
- Vector form of Green Theorem
- Tangential Form
- Normal Form
- Parametric Surface, and Surface Integral
- Stokesโ Theorem
- Divergence Theorem