The witch of Maria Agnesi, Hypocycloid, Trochoids, Limaรงon Curve, Lissajous Curve, Nephroid, Strophoid, The nephroid of Freeth

21 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ณต๋ถ€ํ•˜๋ฉด์„œ ์žฌ๋ฐŒ์–ด ๋ณด์˜€๋˜ ๋ฌธ์ œ๋“ค๊ณผ ํ’€์ด๋“ค์„ ๋ชจ์•„์„œ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ ์ž…๋‹ˆ๋‹ค. ๋ฏธ์ ๋ถ„ํ•™ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

The witch of Maria Agnesi

Thomas Calculus 13th ed. - Example Problem

์ง์ „ $OA$์™€ $x$์ถ•์ด ์ด๋ฃจ๋Š” ๊ฐ์„ $t$๋ผ๊ณ  ํ•˜์ž. ์ด๋•Œ, ์  $P$์˜ ์ž์ทจ์— ๋Œ€ํ•œ ๋ฐฉ์ •์‹์„ ๊ตฌํ•ด์•ผ ํ•œ๋‹ค. ์  $P$์˜ $x$ ์ขŒํ‘œ๋Š” ์  $A$์˜ $x$ ์ขŒํ‘œ๊ฐ’๊ณผ ๊ฐ™๊ณ , ์  $P$์˜ $y$ ์ขŒํ‘œ๋Š” ์ง์ „ $OA$์™€ ์›์ด ๋งŒ๋‚˜๋Š” ์ ์ธ $B$์˜ $y$ ์ขŒํ‘œ๊ฐ’๊ณผ ๊ฐ™๋‹ค.

* ์ฐธ๊ณ ๋กœ ์š” ๋ฌธ์ œ์— ๋‚˜์˜จ ๋งˆ๋ฆฌ์•„ ์•„๋…œ์‹œ(Maria Agnesi)๋Š” ์‹ค์ œ ์ธ๋ฌผ๋กœ, 18์„ธ๊ธฐ ์ดํƒˆ๋ฆฌ์•„์—์„œ ํ™œ๋™ํ•œ ์—ฌ์„ฑ ์ˆ˜ํ•™์ž์ด๋‹ค.

์ผ๋‹จ $P$์˜ $x$ ์ขŒํ‘œ๊ฐ’๋ถ€ํ„ฐ ๊ตฌํ•ด๋ณด์ž. $OQ$์˜ ๊ธธ์ด๊ฐ€ $2$๋กœ ๊ณ ์ • ๋˜์–ด ์žˆ์œผ๋ฏ€๋กœ, $\tan t = 2/x$์ž„์„ ์ด์šฉํ•ด์„œ $x$ ๊ฐ’์„ ์œ ๋„ํ•˜๋ฉด,

\[x = \frac{2}{\tan t} = 2 \cot t\]

์  $P$์˜ $y$ ์ขŒํ‘œ๋Š” ์ง๊ฐ์‚ผ๊ฐํ˜•์˜ ๋‹ฎ์€ ์„ฑ์งˆ๋กœ ์œ ๋„ ๋˜๋Š” ์•„๋ž˜ ์„ฑ์งˆ์„ ํ™œ์šฉํ•ด์•ผ ํ•œ๋‹ค.

\[OA \cdot AB = (AQ)^2\]

๊ทธ๋ฆฌ๊ณ  $y = 2 - AB \cdot \sin t$๋ผ๋Š” ์„ฑ์งˆ๋„ ์‚ฌ์šฉํ•ด์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด $AB$์— ๋Œ€ํ•œ ์‹์„ ์œ ๋„ํ•ด๋ณด์ž.

\[\begin{aligned} AB &= \frac{(AQ)^2}{OA} \\ &= \frac{x^2}{\sqrt{x^2 + 4}} \\ &= \frac{4 \cot^2 t}{\sqrt{4 \cot^2 t + 4}} \\ &= \frac{2 \cot^2 t}{\sqrt{\cot^2 t + 1}} \\ &= 2 \cot^2 \sin t \end{aligned}\]

์ด์ œ ์œ ๋„ํ•œ $AB$ ๊ฐ’์„ ๋Œ€์ž…ํ•˜์—ฌ $y$ ์ขŒํ‘œ๊ฐ’์„ ์œ ๋„ํ•˜๋‹ค.

\[\begin{aligned} y &= 2- 2 \cot^2 t \sin^2 t \\ &= 2(1 - \cos^2 t) \\ &= 2 \sin^2 t \end{aligned}\]

์ข…ํ•ฉํ•˜๋ฉด, ์  $P$์— ๋Œ€ํ•œ ๋งค๊ฐœ๋ฐฉ์ •์‹์€

\[P = \left( \frac{2}{\tan t}, \, 2 \sin^2 t \right)\]

Hypocycloid

Thomas Calculus 13th ed. - Example Problem

ํฐ ์› ์•ˆ์— ์ž‘์€ ์›์„ ๊ตด๋ฆด ๋•Œ ์ƒ๊ธฐ๋Š” ์›์˜ ์ž์ทจ์— ๋Œ€ํ•œ ๋ฐฉ์ •์‹์ด๋‹ค. ํฐ ์›์˜ ๋ฐ˜์ง€๋ฆ„์€ $a$, ์ž‘์€ ์›์˜ ๋ฐ˜์ง€๋ฆ„์„ $b$๋ผ๊ณ  ํ•˜์ž.

์ž‘์€ ์›์˜ ์ค‘์‹ฌ์ธ $C$์˜ ์ขŒํ‘œ๋ฅผ ๊ตฌํ•ด๋ณด์ž. $OC$์˜ ๊ธธ์ด๊ฐ€ $b - a$์ด๋ฏ€๋กœ ์ขŒํ‘œ๊ฐ’์€ ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[C = (x, y) = \left( (a - b) \sin \theta, \, (a-b) \cos \theta \right)\]

์ž‘์€ ์›์ด ์  $A$์—์„œ ์ถœ๋ฐœํ•ด์„œ ์›€์ง์ธ ๊ฐ์˜ ํฌ๊ธฐ๋ฅผ $\theta + \phi$๋ผ๊ณ  ํ•˜์ž. ์ด๋•Œ, $\phi > 0$๊ฐ€ ๋˜๋Š”๋ฐ, ๊ทธ ์ด์œ ๋Š” ํฐ ์›๊ณผ ์ž‘์€ ์›์œผ๋กœ ๋‘˜์˜ ๋ฐ˜์ง€๋ฆ„์— ์ฐจ์ด๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ทธ๋ž˜์„œ ์ž‘์€ ์›์ด ํฐ ์›๋ณด๋‹ค ๋” ๋งŽ์€ ๊ฐ์„ ์›€์ง์ด๊ฒŒ ๋˜๋Š”๋ฐ, ๊ทธ ํฌ๊ธฐ๋ฅผ $\phi$๋ผ๊ณ  ํ•˜์ž.

์ด๋•Œ, ์  $P$์˜ ๊ธธ์ด๋Š” ์ž‘์€ ์›์˜ ์ค‘์‹ฌ $C$์˜ ์ขŒํ‘œ์—์„œ ์ƒ๊ฐํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\begin{aligned} x &= (a-b) \cos \theta + b \cos \phi \\ y &= (a-b) \sin \theta - b \sin \phi \end{aligned}\]

์ด$\theta$์™€ $\phi$ ์‚ฌ์ด์— ์•„๋ž˜์˜ ๊ด€๊ณ„์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

\[a \theta = b (\theta + \phi)\]

์ด๊ฒƒ์€ ์ž‘์€ ์›์ด ํฐ ์›์„ ํœฉ์“ธ๊ณ  ์ง€๋‚˜๊ฐ„ ๊ฑฐ๋ฆฌ์ด๋‹ค. ์ด ๋‘ ๊ฐ’์€ ๋™์ผํ•ด์•ผ ํ•œ๋‹ค. ์ด๊ฒƒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ $\phi$๋ฅผ $\theta$์— ๋Œ€ํ•ด ์ •๋ฆฌํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\phi = \frac{a - b}{b} \theta\]

๋”ฐ๋ผ์„œ ์  $P$์— ๋Œ€ํ•œ ๋งค๊ฐœ๋ฐฉ์ •์‹์„ ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[P = (x, y) = \left((a-b) \cos \theta + b \cos \left( \frac{a-b}{b} \, \theta \right)\,, (a-b) \sin \theta - b \sin \left( \frac{a-b}{b} \, \theta\right) \right)\]

Astroid

k=4 โ†’ an astroid
Public Domain, Link

์ด๋•Œ, ํฐ ์›๊ณผ ์ž‘์€ ์›์˜ ๋ฐ˜์ง€๋ฆ„์ด 4๋ฐฐ ์ฐจ์ด๊ฐ€ ๋‚œ๋‹ค๋ฉด, ๊ถค์ ์ด Astroid๊ฐ€ ๋œ๋‹ค. ์ด๋•Œ์˜ ๋งค๊ฐœ๋ฐฉ์ •์‹์€ ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\begin{aligned} x &= a \cos^3 \theta \\ y &= a \sin^3 \theta \end{aligned}\]

์™œ ๊ทธ๋Ÿฐ์ง€๋Š” ์‹์„ ์œ ๋„ํ•ด๋ณด๋ฉด ๋œ๋‹ค.

[$x$ ์ขŒํ‘œ]

\[\begin{aligned} x &= 3 b \cos \theta + b \cos (3 \theta) \\ &= 3 b \cos \theta + b \left( \cos \theta \cos 2 \theta - \sin \theta \sin 2 \theta \right) \\ &= 3 b \cos \theta + b \left( \cos \theta \cos^2 \theta - 3 \cos \theta \sin^2 \theta - 2 \sin^2 \theta \cos \theta \right) \\ &= 3 b \cos \theta + b \cos^3 \theta - 3b \cos \theta \sin^2 \theta \\ &= b \cos^3 \theta + 3b \cos \theta (1 - \sin^2 \theta) \\ & = b \cos^3 \theta + 3b \cos \theta \cos^2 \theta \\ &= 4b \cos^3 \theta = a \cos^3 \theta \end{aligned}\]

[$y$ ์ขŒํ‘œ]

\[\begin{aligned} y &= 3 b \sin \theta - b \sin (3 \theta) \\ &= 3 b \sin \theta - b \left( \sin \theta \cos 2 \theta + \cos \theta \sin 2 \theta \right) \\ &= 3 b \sin \theta - b \left( \sin \theta \cos 2 \theta + \cos \theta \sin 2 \theta \right) \\ &= 3 b \sin \theta - b \left( \sin \theta \cos^2 \theta - \sin^3 \theta + 2 \cos^2 \theta \sin \theta \right) \\ &= 3 b \sin \theta + b \sin^3 \theta - 3 b \sin \theta \cos^2 \theta \\ &= b \sin^3 \theta - 3 b \sin \theta (\cos^2 - 1) \theta \\ &= b \sin^3 \theta + 3 b \sin^3 \theta \\ &= 4b \sin^3 \theta = a \sin^3 \theta \\ \end{aligned}\]

Trochoids

Picture from Wolfram Mathworld

์ง์„  ์œ„๋ฅผ ๋‘ฅ๊ทผ ์›์ด ๋‘˜๋Ÿฌ๊ฐˆ ๋•Œ์˜ ์ž์ทจ๋ฅผ ์ผ๋ฐ˜ํ™”ํ•œ ๊ฒƒ์ด โ€œTrochoidsโ€์ด๋‹ค. ์›์˜ ๋ฐ˜์ง€๋ฆ„์„ $a$๋ผ๊ณ  ํ•˜๊ณ , ์›์˜ ์ค‘์‹ฌ์—์„œ ๋ป—์–ด๋‚˜์˜จ ๋ฐ”ํ‡์‚ด(spoke of wheel)์˜ ๊ธธ์ด๋ฅผ $b$๋ผ๊ณ  ํ•˜์ž. ์ด๋•Œ, $a = b$์ธ ์ƒํ™ฉ์ด ๋งŽ์ด ์‚ดํŽด๋ณธ โ€œCycloidโ€์˜ ๊ฒฝ์šฐ๋‹ค. ์ด๋ฆ„์€ ๊ทธ๋ฆฌ์Šค์–ด๋กœ โ€œ๋ฐ”ํ€ดโ€๋ฅผ ๋œปํ•˜๋Š” trochos์—์„œ ์œ ๋ž˜ํ–ˆ๋‹ค๊ณ  ํ•œ๋‹ค.

๋งค๊ฐœ๋ฐฉ์ •์‹์€ Cycloid์˜ ๊ฒƒ์„ ๊ตฌํ–ˆ๋˜ ์ ‘๊ทผ๊ณผ ๋น„์Šทํ•˜๊ฒŒ ์œ ๋„ํ•˜๋ฉด ๋œ๋‹ค.

\[\begin{aligned} x &= a \theta - b \sin \theta \\ y &= a - b \cos \theta \end{aligned}\]

Complete Elliptic Integral

์•„๋ž˜์™€ ๊ฐ™์€ ํƒ€์›์˜ ๋‘˜๋ ˆ๋ฅผ ๊ณ„์‚ฐํ•ด๋ณด์ž.

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]

์ด๋ฅผ ๋งค๊ฐœ๋ณ€์ˆ˜๋กœ ํ‘œํ˜„ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\begin{aligned} x &= a \cos t \\ y &= b \sin t \end{aligned}\]

๋งค๊ฐœ๋ณ€์ˆ˜ ๋ฐฉ์ •์‹์˜ arc length๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ์‹์— ๋”ฐ๋ผ ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[P = 4 \cdot \int_0^{\pi/2} \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} \, dt\]

์‹์„ $a$๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์ •๋ฆฌํ•˜๋ฉดโ€ฆ

\[\begin{aligned} P &= 4 \cdot \int_0^{\pi/2} \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} \, dt \\ &= 4 \cdot \int_0^{\pi/2} \sqrt{b^2 - (b^2 - a^2)\sin^2 t} \, dt \\ &= 4 \cdot \int_0^{\pi/2} b \sqrt{1 - \frac{(b^2 - a^2)}{b^2}\sin^2 t} \, dt \\ &= 4 \cdot \int_0^{\pi/2} b \sqrt{1 - k^2 \sin^2 t} \, dt \\ \end{aligned}\]

์ด๋•Œ, $k$๋Š” ์ด์‹ฌ๋ฅ (eccentricity)๋กœ $0 \le k^2 \le 1$์˜ ๊ฐ’์„ ๊ฐ–๋Š”๋‹ค.

์š” ํƒ€์› ์ ๋ถ„์ด ์™„์ „(complete)์ธ ์ด์œ ๋Š” $0$๋ถ€ํ„ฐ $\pi/2$๊นŒ์ง€ ์ ๋ถ„ํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋งŒ์•ฝ ์ ๋ถ„ ๋ฒ”์œ„๊ฐ€ $\pi/2$๊ฐ€ ์•„๋‹ˆ๋ผ ๋ณ€์ˆ˜๋ผ๋ฉด, ๋ถˆ์™„์ „ ํƒ€์› ์ ๋ถ„์ด๋ผ๊ณ  ํ•œ๋‹ค.

\[F(\theta, k) = \int_0^{\theta} \sqrt{1 - k^2 \sin^2 t} \, dt\]

ํ’€์ด

ํƒ€์›์˜ ๋‘˜๋ ˆ๋ฅผ ๊ตฌํ•˜๋Š” ์ ๋ถ„์€ non-elementary integral์ž„์ด ์•Œ๋ ค์ ธ ์žˆ๋‹ค. non-elementary integral์ด๋ผ๊ณ  ํ•ด๋„ ์ ๋ถ„๊ฐ’์€ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋‹ค!! ์–ด๋–ป๊ฒŒ ๊ตฌํ•˜๋Š”์ง€ ์‚ดํŽด๋ณด์ž.

$\sqrt{1 - x}$๋ฅผ Generalized Binomial Theorem์„ ์ ์šฉํ•ด ์ „๊ฐœํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\sqrt{1-x} = \sum_{n=0}^{\infty} \binom{1/2}{n} x^n = 1 - \frac{1}{2} x - \frac{1}{8} x^2 - \cdots\]

์ด๊ฑธ $\sqrt{1 - k^2 \sin^2 t}$์— ์ ์šฉํ•ด๋ณด์ž.

\[\sqrt{1-k^2 \sin^2 t} = 1 - \frac{1}{2} k^2 \sin^2 t - \frac{1}{8} k^4 \sin^4 t - \cdots\]

์ด์ œ $[0, \pi/2]$ ๋ฒ”์œ„์— ๋Œ€ํ•ด ์ ๋ถ„ํ•ด๋ณด์ž.

\[\begin{aligned} &\int_0^{\pi/2} \sqrt{1-k^2 \sin^2 t} \, dt \\ &=\int_0^{\pi/2} 1 - \frac{1}{2} k^2 \sin^2 t - \frac{1}{8} k^4 \sin^4 t - \cdots \, dt \\ \end{aligned}\]

์ด๋•Œ, $n$์ด ์ง์ˆ˜์ผ ๋•Œ, ์ ๋ถ„ $\int_0^{\pi/2} \sin^n t \, dt$์— ๋Œ€ํ•ด์„œ ์•„๋ž˜๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค.

\[\begin{aligned} &\int_0^{\pi/2} \sin^n t \, dt \\ &= \frac{1 \cdot 3 \cdot 5 \cdots (n-1)}{2 \cdot 4 \cdot 6 \cdots n} \cdot \frac{\pi}{2} \\ &=\frac{(n-1)!!}{n!!} \cdot \frac{\pi}{2} \end{aligned}\]

์ ๋ถ„์‹์„ ์ •๋ฆฌํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\begin{aligned} &\int_0^{\pi/2} \sqrt{1-k^2 \sin^2 t} \, dt \\ &=\int_0^{\pi/2} 1 - \frac{1}{2} k^2 \sin^2 t - \frac{1}{8} k^4 \sin^4 t - \cdots \, dt \\ &= \frac{\pi}{2} - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{\pi}{2}\cdot k^2 - \frac{1}{2 \cdot 4} \cdot \frac{1 \cdot 3}{2 \cdot 4} \frac{\pi}{2} k^4 - \cdots \\ &= \frac{\pi}{2} \left( 1 - \left( \frac{1}{2} \right)^2 k^2 - \left( \frac{1 \cdot 3}{2 \cdot 4} \right)^2 \frac{k^4}{3} - \cdots \right) \end{aligned}\]

์œ„์˜ ์ ๋ถ„์€ ์ˆ˜๋ ดํ•˜๋Š”์ง€๋Š” $k^2$์˜ ๋“ฑ๋น„ ๊ธ‰์ˆ˜์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ, ์œ„์˜ ์ ๋ถ„์ด ๋” ๊ฐ€ํŒŒ๋ฅด๊ฒŒ ๊ฐ์†Œํ•˜๊ธฐ ๋•Œ๋ฌธ์—, Complete Elliptical Integral์ด ์ˆ˜๋ ดํ•œ๋‹ค๊ณ  ๋งํ•  ์ˆ˜ ์žˆ๋‹ค.

Limaรงon Curve

EpitrochoidIn1.gif
By Sam Derbyshire - http://en.wikipedia.org/wiki/Image:EpitrochoidIn1.gif, CC BY-SA 3.0, Link

๋ฆฌ๋งˆ์†ก(Limacon)์€ ํ”„๋ž‘์Šค์–ด๋กœ ๋‹ฌํŒฝ์ด๐ŸŒ๋ผ๋Š” ๋œป์ด๋‹ค. ๊ณก์„ ์— ๋Œ€ํ•œ ์ •์˜๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

๊ณ ์ •๋œ ์› $O_1$์˜ ๋ฐ”๊นฅ์ชฝ์— ์™ธ์ ‘ํ•œ, ๋ฐ˜์ง€๋ฆ„ ๊ธธ์ด๊ฐ€ ๊ฐ™์€ ๋‹ค๋ฅธ ํ•œ ์› $O_2$๋ฅผ ๋ฏธ๋„๋Ÿฌ์ง ์—†์ด ํ•œ ๋ฐ”ํ€ด ๊ตด๋ ธ๋‹ค๊ณ  ํ•˜์ž. ์ด๋•Œ, ๊ตฌ๋ฅด๋Š” ์›์˜ ์ค‘์‹ฌ์—์„œ ์ผ์ •ํ•œ ๊ฑฐ๋ฆฌ๋งŒํผ ๋–จ์–ด์ ธ ์žˆ๋Š” ์ง€์ ์ธ ์›์˜ ๋ฐ”ํ‡์‚ด์ด ๊ตฌ๋ฅด๋Š” ์›๊ณผ ํ•จ๊ป˜ ์›€์ง์ด๋ฉฐ ๊ทธ๋ฆฌ๋Š” ์ ์˜ ์ž์ทจ.

Parametric Equation

๋งค๊ฐœ๋ฐฉ์ •์‹์˜ ๊ผด๋กœ ์œ ๋„ํ•ด๋ณด์ž. ๊ณ„์‚ฐ์˜ ํŽธ์˜๋ฅผ ์œ„ํ•ด ๋ฐ”๊นฅ ์›์˜ ๋ฐ”ํ‡์‚ด์„ ์›์˜ ๋ฐ˜์ง€๋ฆ„๊ณผ ๊ฐ™์€ $R$์ด๋ผ๊ณ  ํ•˜์ž.

์  $O_2$์˜ ์ž์ทจ๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[O_2 = (2R \cos \theta, \; 2R \sin \theta)\]

์ด๋•Œ, ์ง์„  $O_2 P$๊ฐ€ $x$์ถ•๊ณผ ์ด๋ฃจ๋Š” ๊ฐ๋„๊ฐ€ $2 \theta$์ด๋ฏ€๋กœ ์  $P$์˜ ์ž์ทจ๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[P = (2R \cos \theta - R \cos 2 \theta, \; 2R \sin \theta - R \sin 2 \theta)\]

์œ„์™€ ๊ฐ™์ด ๊ธฐ์ˆ ํ•ด๋„ ์ถฉ๋ถ„ํ•˜๋‹ค. ํ•˜์ง€๋งŒ ์—ฌ๊ธฐ์„œ ๋ฐฐ๊ฐ $2 \theta$๋ฅผ ํ’€์–ด์„œ $\theta$์— ๋Œ€ํ•ด์„œ๋กœ ๋ฐ”๊ฟ”๋ณด์ž.

<$x$ ์ขŒํ‘œ>

\[\begin{aligned} x &= 2R \cos \theta - R \cos 2 \theta \\ &= 2R \cos \theta - R \cos^2 \theta + R \sin^2 \theta \\ &= 2R \cos \theta - R \cos^2 \theta + R(1 - \cos^2 \theta) \\ &= 2R \cos \theta - 2R \cos^2 \theta + R \\ &= R + 2R \cos \theta (1 - \cos \theta) \end{aligned}\]

<$y$ ์ขŒํ‘œ>

\[\begin{aligned} y &=2R \sin \theta - R \sin 2 \theta \\ &= 2R \sin \theta - 2R \sin \theta \cos \theta \\ &= 2R \sin \theta (1 - \cos \theta) \end{aligned}\]

์–ด๋–ค ์ž๋ฃŒ์—์„œ๋Š” ์  $P$์˜ ์ž์ทจ๊ฐ€ ์›์  $O$๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜๋„๋ก ๊ธฐ์ˆ ํ•˜๊ธฐ ์œ„ํ•ด $x$ ์ถ•์— ๋Œ€ํ•ด์„œ ํ‰ํ–‰์ด๋™ ์‹œํ‚ค๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ๋‹ค. ์ด ๊ฒฝ์šฐ, ๋ฐฉ์ •์‹์ด ์•„๋ž˜์™€ ๊ฐ™์ด ๊ธฐ์ˆ ๋œ๋‹ค.

\[P' = (2R \cos \theta (1 - \cos \theta), \; 2R \sin \theta (1 - \cos \theta))\]

์š”๋ ‡๊ฒŒ ์›์  $O$์—์„œ ์‹œ์ž‘ํ•˜๋Š” ๋ฆฌ๋งˆ์†ก ๊ณก์„ ์€ ๋’ค์—์„œ ๊ทน์ขŒํ‘œ ๋ฐฉ์ •์‹์œผ๋กœ ํ‘œํ˜„ํ•  ๋•Œ ์‚ฌ์šฉํ•˜๊ฒŒ ๋œ๋‹ค.


์œ„์˜ ์œ ๋„์—์„œ๋Š” ๋ฐ”ํ‡์‚ด์˜ ๊ธธ์ด๊ฐ€ ์›์˜ ๋ฐ˜์ง€๋ฆ„์ธ $R$๊ณผ ๊ฐ™๋‹ค๊ณ  ๋‘์—ˆ๋‹ค. ๋ฐ”ํ‡์‚ด์˜ ๊ธธ์ด๊ฐ€ $R$์ด ์•„๋‹Œ $r$๋ผ๊ณ  ํ•œ๋‹ค๋ฉด, ์‹์€ ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\begin{aligned} P &= (2R \cos \theta - r \cos 2\theta, \; 2R \sin \theta - r \sin 2\theta) \\ &= (r + 2 \cos \theta(R - r \cos \theta), \; 2 \sin \theta (R - r \sin \theta)) \end{aligned}\]

Polar Equation

๋งค๊ฐœ๋ณ€์ˆ˜ ๋ฐฉ์ •์‹์œผ๋กœ ํ‘œํ˜„ํ•œ ๋ฆฌ๋งˆ์†ก ๊ณก์„ ์„ ๊ทน์ขŒํ‘œ ๋ฐฉ์ •์‹์œผ๋กœ ํ‘œํ˜„ํ•ด๋ณด์ž. ์ด๋•Œ, ์›์  $O$์—์„œ ์‹œ์ž‘ํ•˜๋Š” ๋ฆฌ๋งˆ์†ก ๊ณก์„ ์„ ํ‘œํ˜„ํ•œ ๋ฐฉ์ •์‹์„ ์‚ฌ์šฉํ•˜๋ฉด, ์‹์ด ํ›จ์”ฌ ๊ฐ„ํŽธํ•˜๊ฒŒ ์ •๋ฆฌ๋œ๋‹ค.

\[\begin{aligned} r^2 &= x^2 + y^2 \\ &= \left( 2R \cos \theta \cdot (1 - \cos \theta) \right)^2 + \left( 2R \sin \theta \cdot (1 - \cos \theta) \right)^2 \\ &= 4 R^2 \cdot (1 - \cos \theta)^2 \end{aligned}\]

์ฆ‰, ๊ทน์ขŒํ‘œ ๋ฐฉ์ •์‹์„ ํ‘œํ˜„ํ•˜๋ฉด $r = 2 R \cdot (1 - \cos \theta)$๋กœ ํ‘œํ˜„๋œ๋‹ค.


Limacons.svg
By Mktyscn - Made by Mktyscn using a custom C program and Windows Notepad, CC BY-SA 3.0, Link

๋งŒ์•ฝ ๋ฐ”ํ‡์‚ด์˜ ๊ธธ์ด๊ฐ€ $r$๋ผ๊ณ  ํ•˜๋ฉด, ๊ทน์ขŒํ‘œ์‹์€ ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[r = 2R - 2r \cos \theta\]

$R$๊ณผ $r$์˜ ๋Œ€์†Œ ๊ด€๊ณ„์— ๋”ฐ๋ฅธ ๋ฆฌ๋งˆ์†ก ๊ณก์„ ์˜ ๋ชจ์–‘์ด ์–ด๋–ป๊ฒŒ ๋‹ฌ๋ผ์ง€๋Š”์ง€, ์œ„์˜ ๊ทธ๋ฆผ์„ ๊ธฐ์ค€์œผ๋กœ ์ดํ•ดํ•ด๋ณด๋ฉด

  • $R > r$
    • ์›์  $O$๋ฅผ ์ง€๋‚˜์ง€ ์•Š๋Š”๋‹ค.
  • $R = r$
    • ์›์  $O$๋ฅผ ์ง€๋‚˜๊ฐ„๋‹ค.
    • ์‹ฌ์žฅํ˜• ๊ณก์„ 
  • $R < r$
    • ์›์  $O$๋ฅผ ์ง€๋‚˜๊ฐ„๋‹ค.
    • ์›์  $O$๋ฅผ ์ง€๋‚˜๋ฉด์„œ ๋งค๋“ญ์ด ์ƒ๊ธด๋‹ค.

Cardioid

Kardioide.svg
By Ag2gaeh - Own work, CC BY-SA 4.0, Link

์‹ฌ์žฅํ˜• ๊ณก์„ (cardioid)๋Š” ๋ฆฌ๋งˆ์†ก ๊ณก์„ ์˜ ํŠน์ˆ˜ํ•œ ๊ฒฝ์šฐ๋กœ, ์›์˜ ๋ฐ˜์ง€๋ฆ„๊ณผ ๋ฐ”ํ‡์‚ด์˜ ๋ฐ˜์ง€๋ฆ„์˜ ๊ธธ์ด๊ฐ€ ๊ฐ™์€ ๊ฒฝ์šฐ๋‹ค: $R = r$.

๋งค๊ฐœ๋ณ€์ˆ˜ ๋ฐฉ์ •์‹์œผ๋กœ๋Š”

\[\begin{aligned} x &= 2R \cos \theta (1 - \cos \theta) \\ y &= 2R \sin \theta (1 - \cos \theta) \end{aligned}\]

๊ทน์ขŒํ‘œ ๋ฐฉ์ •์‹์œผ๋กœ๋Š”

\[r = 2R (1 - \cos \theta)\]

Lissajous Curve

Lissajous figures: various frequency relations and phase differences
By Vhastorga - Own work, CC BY-SA 4.0, Link

๋ฆฌ์‚ฌ์ฃผ ๊ณก์„ (Lissajous Curve)๋Š” ๋‘ ์‚ฌ์ธํŒŒ ๊ณก์„ ์ด ์ˆ˜ํ‰์ถ•๊ณผ ์ˆ˜์ง์ถ•์„ ์ด๋ฃฐ ๋•Œ, ์ด ๋“ค์˜ ์œ„์ƒ์ฐจ(phase difference), ์ฃผํŒŒ์ˆ˜๋น„์— ๋”ฐ๋ผ ๊ทธ๋ ค์ง€๋Š” ๊ณก์„ ์„ ๋งํ•œ๋‹ค.

Harmonie-circulaire.gif
By Thierry Dugnolle - Own work, CC BY-SA 4.0, Link

๊ฐ€์žฅ ์ต์ˆ™ํ•œ ํ˜•ํƒœ๋กœ๋Š” ์›ํ˜•(Circle)์œผ๋กœ $x = \cos t$, $y = \sin t$๋กœ ๋‘ ๊ณก์„ ์€ $\pi/2$์˜ ์œ„์ƒ์ฐจ์— ๊ฐ™์€ ์ฃผํŒŒ์ˆ˜๋น„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค.


๋ฆฌ์‚ฌ์ฅฌ ๊ณก์„ ์„ ์ด๋ฃจ๋Š” ๋‘ ์‚ฌ์ธํŒŒ์˜ ์ฃผ๋ฐ”์ˆ˜๋น„๋ฅผ ์‰ฝ๊ฒŒ ํ™•์ธํ•˜๋Š” ๋ฐฉ๋ฒ•์€ $x$์ถ•๊ณผ $y$์ถ•์—์„œ $x=1$, $y=1$ ์ง€์ ์— ๊ณก์„ ์ด ๋ช‡๋ฒˆ ์ ‘ํ•˜๋Š”์ง€ ์„ธ์–ด๋ณด๋ฉด ๋œ๋‹ค.

์ฒซ๋ฒˆ์งธ ๊ณก์„ ์€ $x=1$์— 1๋ฒˆ ์ ‘ํ•˜๊ณ  $y=1$์— 2๋ฒˆ ์ ‘ํ•˜๋ฏ€๋กœ, $x$ ์‚ฌ์ธํŒŒ์™€ $y$ ์‚ฌ์ธํŒŒ์˜ ์ฃผํŒŒ์ˆ˜ ๋น„์œจ์ด 1:2๋ฅผ ์ด๋ฃฌ๋‹ค.
๋‘๋ฒˆ์งธ ๊ณก์„ ์€ $x=1$์— 2๋ฒˆ ์ ‘ํ•˜๊ณ  $y=1$์— 3๋ฒˆ ์ ‘ํ•˜๋ฏ€๋กœ, $x$ ์‚ฌ์ธํŒŒ์™€ $y$ ์‚ฌ์ธํŒŒ์˜ ์ฃผํŒŒ์ˆ˜ ๋น„์œจ์ด 2:3์„ ์ด๋ฃฌ๋‹ค.

Nephroid

EpitrochoidOn2.gif
By Sam Derbyshire at the English Wikipedia, CC BY-SA 3.0, Link

์ฝฉํŒฅํ˜• ๊ณก์„ (Nephroid, ๋„คํ”„๋กœ์ด๋“œ)๋Š” ๊ถค์ ์˜ ๋ชจ์–‘์ด ์ฝฉํŒฅ๊ณผ ๊ฐ™์ด ์ƒ๊ธด ๊ณก์„ ์ด๋‹ค.

๊ณ ์ •๋œ ์›์˜ ๋ฐ”๊นฅ์„ ๋‹ค๋ฅธ ์›์ด ๊ตฌ๋ฅด๋Š” ๊ถค์ ์ด๋ผ๋Š” ์ ์—์„œ ์•ž์—์„œ ์‚ดํŽด๋ณธ ๋ฆฌ๋งˆ์†ก(Limaรงon) ๊ณก์„ ๊ณผ ๋น„์Šทํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋ฆฌ๋งˆ์†ก ๊ณก์„ ์€ ๊ณ ์ •๋œ ์›๊ณผ ๊ตฌ๋ฅด๋Š” ์›์˜ ๋ฐ˜์ง€๋ฆ„์ด ์ •ํ™•ํžˆ ๊ฐ™์•˜๊ณ , ๋„คํ”„๋กœ์ด๋“œ ๊ณก์„ ์€ ๊ณ ์ •๋œ ์›๊ณผ ๊ตฌ๋ฅด๋Š” ์›์˜ ๋ฐ˜์ง€๋ฆ„ ๋น„์œจ์ด โ€œ2:1โ€œ์ด๋‹ค.

Parametric Equations

๋งค๊ฐœ๋ณ€์ˆ˜ ๋ฐฉ์‹์„ ์œ ๋„ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\begin{aligned} x &= 3 r \cos \theta - r \cos 3\theta \\ y &= 3r \sin \theta - r \sin 3\theta \end{aligned}\]

Strophoid

Allgemeine strophoide5.svg
By Kmhkmh - Own work, CC BY 4.0, Link

ํ‰๋ฉด ์ƒ์—์„œ ๊ณก์„  $C$์™€ ๊ณ ์ •์  $A$, ๊ทธ๋ฆฌ๊ณ  ์›์  $O$์— ์˜ํ•ด ์ƒ์„ฑ๋˜๋Š” ๊ณก์„ ์„ ๋งํ•œ๋‹ค. ๋งŒ๋“œ๋Š” ๊ณผ์ •์€ ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

์›์  $O$์—์„œ ์ถœ๋ฐœํ•ด ๊ณก์„  $C$๋ฅผ ์ง€๋‚˜๋Š” ์ง์„  $L$์„ ์ƒ๊ฐํ•ด๋ณด์ž. ์ง์„  $L$์ด ๊ณก์„  $C$์™€ $K$๋ผ๋Š” ์ ์„ ์ง€๋‚˜๊ฐ„๋‹ค. ๊ณ ์ •์  $A$์™€ ์  $K$ ์‚ฌ์ด ๊ฑฐ๋ฆฌ๋ฅผ $\overline{AK}$๋ฅผ ๋ฐ˜์ง€๋ฆ„์œผ๋กœ ํ•˜๊ณ  ์  $K$๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ•˜๋Š” ์›์„ ํ•˜๋‚˜ ์ƒ๊ฐํ•ด๋ณด์ž. ๊ทธ ์›๊ณผ ์ง์ „ $L$์ด ์ ํ•˜๋Š” ๋‘ ์ง€์ ์ด ์žˆ๋Š”๋ฐ, ๊ทธ๊ฑธ $P_1$๊ณผ $P_2$๋ผ๊ณ  ํ•˜์ž. ๊ทธ๋Ÿผ ์•„๋ž˜ ๋“ฑ์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

\[\overline{AK} = \overline{KP_1} = \overline{KP_2}\]

์ง์ „ $L$์„ ํšŒ์ „ํ™”๋ฉด ์ด๋Ÿฐ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ์  $P_1$๊ณผ ์  $P_2$์˜ ์ž์ทจ๊ฐ€ ์ƒ๊ธด๋‹ค. ์ด๊ฒƒ์„ โ€œStrophoidโ€๋ผ๊ณ  ํ•œ๋‹ค.

๊ณก์„  $C$๊ฐ€ ์„ (line)์ด๋ผ๋ฉด, ๋‘ ๊ฐœ์˜ Strophoid ๊ณก์„ ์€ ๋งŒ๋“ค์–ด์ง„๋‹ค. ์ด๋•Œ, ๊ณก์„  ํ•˜๋‚˜๋Š” ๊ณ ์ •์  $A$๊ฐ€ ์œ„์— ์กด์žฌํ•˜๋Š”๋ฐ, ์ด๋ฅผ โ€œoblique strophoidโ€๋ผ๊ณ  ํ•œ๋‹ค.

The nephroid of Freeth

Freeth(1819 - 1904)๋ผ๋Š” ์˜๊ตญ์˜ ์ˆ˜ํ•™์ž๊ฐ€ ์—ฐ๊ตฌํ•œ ๊ณก์„ ์ด๋‹ค. ์•ž์—์„œ Nephroid๋ผ๋Š” ์ด๋ฆ„์ด ๋ถ™์–ด์žˆ์ง€๋งŒ, ๋ชจ์–‘์€ ๋‹ค๋ฅด๊ฒŒ ์ƒ๊ฒผ๋‹ค.

By Robert FERREOL at the mathcurve.com

๊ณ ์ •๋œ ์› ์œ„์˜ ๊ณ ์ •๋œ ํ•œ ์  $A$์™€ ์›์  $O$๋ฅผ ์ง€๋‚˜๋Š” ์ง์„  $L$์ด ์žˆ๋‹ค๊ณ  ํ•˜์ž. ๊ทธ ์ง์„  $L$์ด ๊ณ ์ • ์›์„ ์ง€๋‚˜๋Š” ์ ์„ $M_0$๋ผ๊ณ  ํ•  ๋•Œ, ๊ต์ฐจ์  $M_0$์„ ์›์ ์œผ๋กœ ํ•˜๊ณ , $\overline{AM_0}$๋ฅผ ๋ฐ˜์ง€๋ฆ„์œผ๋กœ ํ•˜๋Š” ์›์„ ๋– ์˜ฌ๋ ค๋ณด์ž. ์ด๋•Œ, ๊ทธ ์›๊ณผ ์ง์„  $L$์ด ๋งŒ๋‚˜๋Š” ์ง€์ ์„ $M$, $Mโ€™$๋ผ๊ณ  ํ•˜์ž. ๊ทธ๋Ÿฌ๋ฉด The nephroid of Freeth๋Š” ๊ทธ ๋‘ ์  $M$, $Mโ€™$์ด ๋งŒ๋“œ๋Š” ์ž์ทจ์ด๋‹ค.

๊ทน๋ฐฉ์ •์‹์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[r = 1 + 2 \sin \frac{\theta}{2}\]

$(0, 2\pi)$ ๊ตฌ๊ฐ„์—์„œ๋Š” ์› ๋ฐ”๊นฅ์˜ ๊ณก์„ ์„ ๋งŒ๋“ค๊ณ , $(2\pi, 4\pi)$ ๊ตฌ๊ฐ„์—์„œ๋Š” ์› ์•ˆ์˜ ๊ณก์„ ์ด ๋งŒ๋“ค์–ด์ง„๋‹ค.

๋งบ์Œ๋ง

์•„๋‹ˆ ์ด๋ฆ„ ๋ถ™์€ ๊ณก์„ ์ด ์„ธ์ƒ์— ์ด๋ ‡๊ฒŒ๋‚˜ ๋งŽ์€ ๊ฑด์ง€โ€ฆ;; ๊ต์žฌ ์—ฐ์Šต ๋ฌธ์ œ์— ๋‚˜์™”๋˜ ๊ณก์„ ๋“ค์„ ์ฐพ์•„๋‹ค ์ ์  ์•„์ŠคํŠธ๋ž„ ํ•ด์ง€๋Š” ๊ฒฝํ—˜์ด์—ˆ๋‹คโ€ฆ ๐ŸŒŒ

๊ทธ๋ž˜๋„ ์ด์   ๊ตด๋Ÿฌ๋‹ค๋‹ˆ๋Š” ์›์œผ๋กœ ๋งŒ๋“ค์–ด์ง„ ๊ณก์„ ๋“ค ๊ฐ™์€ ๊ฑฐ๋Š” ํ™•์‹คํžˆ ์‹์„ ์œ ๋„ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ ๊ฐ™๋‹ค ใ…‹ใ…‹ใ…‹ใ…‹

Categories:

Updated: