์ด๋ณ€์ˆ˜ ํ•จ์ˆ˜, ์‚ผ๋ณ€์ˆ˜ ํ•จ์ˆ˜ ์ ๋ถ„ํ•˜๊ธฐ. ์ ๋ถ„ํ•˜๋ ค๋Š” ํ•จ์ˆ˜๊ฐ€ ์—ฐ์†์„ฑ์„ ๊ฐ–๋Š”๋‹ค๋ฉด, ์ ๋ถ„ ์ˆœ์„œ๋Š” ์ƒ๊ด€์—†๋‹ค(Fubiniโ€™s Theorem). ์ค‘์ ๋ถ„์—์„œ ์น˜ํ™˜ ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•  ๋•Œ ์ขŒํ‘œ๊ณ„๋ฅผ ๋ณ€ํ™˜ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉํ•˜๋Š” Jacobian โ˜ฏ๏ธ

12 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฏธ์ ๋ถ„ํ•™ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

Fubiniโ€™s Theorem

If $f$ is continuous on the rectangle

\[R = \{ (x, y) \| a \le x \le b, c \le g \le d\}\]

then

\[\underset{R}{\iint} f(x, y) \, dA = \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy dx = \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx dy\]

์ฆ‰, ํ•จ์ˆ˜๊ฐ€ ์ง์‚ฌ๊ฐํ˜•์˜ ์ •์˜์—ญ ์•ˆ์—์„œ ์—ฐ์†์„ฑ์„ ๊ฐ€์ง€๋Š” ์ ๋‹นํ•œ ํ•จ์ˆ˜๋ผ๋ฉด, ์ ๋ถ„ ์ˆœ์„œ๋ฅผ $x$ ๋จผ์ € ํ•˜๋“ , $y$ ๋จผ์ € ํ•˜๋“  ์ƒ๊ด€ ์—†์ด ๊ฐ™์€ ์ ๋ถ„ ๊ฐ’์ด ๋‚˜์˜จ๋‹ค๋Š” ๊ฑธ ๋งํ•œ๋‹ค.

Double Integral Over General Region

์œ„์˜ ๊ฒฝ์šฐ๋Š” ์ ๋ถ„ ์˜์—ญ $R$์ด โ€˜์ง์‚ฌ๊ฐํ˜•โ€™์˜ ๋‚˜์ด์Šคํ•œ ํ˜•ํƒœ๋กœ ์ฃผ์–ด์ง„ ๊ฒฝ์šฐ๋‹ค. ์ด๋Ÿฐ ์ด์ค‘ ์ ๋ถ„์€ ์ •๋ง ์‰ฝ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋งŽ์€ ๊ฒฝ์šฐ, ์ ๋ถ„ ์˜์—ญ์€ ์ž์œ ๋ถ„๋ฐฉํ•œ ํ˜•ํƒœ๋กœ ์กด์žฌํ•œ๋‹ค. ํŠนํžˆ $y = g(x)$์˜ ๊ด€๊ณ„๋ฅผ ๋งŒ์กฑํ•˜๊ฑฐ๋‚˜,$x = h(y)$์˜ ๊ด€๊ณ„๋ฅผ ๋งŒ์กฑํ•˜๋Š” ์ ๋ถ„ ์˜์—ญ์„ ๋งˆ์ฃผํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์„ ๊ฒƒ์ด๋‹ค.

Thomas Calculus 13th ed. - Example Problem

์ด ๊ฒฝ์šฐ๋Š” $x = h(y)$์˜ ๊ผด๋กœ ์ ๋ถ„ ์˜์—ญ์ด ํ‘œํ˜„๋˜๋Š” ๊ฒฝ์šฐ์— ํ•ด๋‹นํ•œ๋‹ค. ๊ทธ๋ž˜์„œ $x$ ์ถ• ๋ฐฉํ–ฅ์œผ๋กœ ๋จผ์ € ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•œ ํ›„์—, $y$ ์ถ• ๋ฐฉํ–ฅ์œผ๋กœ ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

Thomas Calculus 13th ed. - Example Problem

์œ„์˜ ์˜ˆ์ œ๋Š” ๋ฐ˜๋Œ€๋กœ $y = g(x)$ ๊ผด๋กœ ํ‘œํ˜„ํ•˜์—ฌ ํ•ด๊ฒฐํ•  ์ˆ˜๋„ ์žˆ๋‹ค. ์ด ๊ฒฝ์šฐ๋Š” $y$ ์ถ• ๋ฐฉํ–ฅ์œผ๋กœ ๋จผ์ € ์ ๋ถ„ ํ›„ $x$ ์ถ• ๋ฐฉํ–ฅ์œผ๋กœ ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

Double Integrals in Polar Form

์–ด๋–ค ํ•จ์ˆ˜๋“ค์€ ์›์ ์„ ๊ธฐ์ค€์œผ๋กœ ํ•˜๋Š” ๊ทน์ขŒํ‘œ๊ณ„๋กœ ํŽธ๋ฆฌํ•˜์—ฌ, ์ ๋ถ„๋„ ๊ทน์ขŒํ‘œ๊ณ„๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋Š”๊ฒŒ ๋” ์‰ฌ์šด ๊ฒฝ์šฐ๋„ ์žˆ๋‹ค.

์œ„์™€ ๊ฐ™์€ ๊ฒฝ์šฐ, ๊ทน์ขŒํ‘œ๊ณ„๋กœ ํ‘œํ˜„ํ•˜๋ฉด

  • $R = \{ (r, \theta) | 0 \le r \le 1, \; 0 \le \theta \le 2 \pi \}$
  • $R = \{ (r, \theta) | 1 \le r \le 2, \; 0 \le \theta \le \pi \}$

์™€ ๊ฐ™์ด $xy$-์ขŒํ‘œ๊ณ„์—์„œ ์ง์‚ฌ๊ฐํ˜•์„ ํ‘œํ˜„ํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ์‰ฝ๊ฒŒ ์˜์—ญ $R$๋ฅผ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ์ด๋Ÿฐ ํ˜•ํƒœ์˜ ์˜์—ญ์„ โ€œPolar Rectangleโ€œ์ด๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค ใ…‹ใ…‹

Gilbert Strang - Calculus Vol 3.


์ด๋•Œ, $xy$ ์ขŒํ‘œ๊ณ„์—์„œ์˜ ์ ๋ถ„๊ณผ ๋‹ฌ๋ฆฌ ๊ทน์ขŒํ‘œ์—์„œ์˜ ์ ๋ถ„์€ ์•„๋ž˜์™€ ๊ฐ™์ด ๋ณ€ํ™˜์ด ํ•„์š”ํ•˜๋‹ค.

\[\underset{R}{\iint} f(x, y) \, dx dy = \underset{R}{\iint} f(r, \theta) \cdot r \cdot dr d\theta\]

์œ„์˜ ์‹์„ ๋ณด๋ฉด, ๋ฏธ๋ถ„์†Œ๊ฐ€ $dx dy = r \cdot dr d\theta$์ด ๋˜๋Š”๋ฐ,

Gilbert Strang - Calculus Vol 3.

์œ„์™€ ๊ฐ™์ด Polar Rectangle์˜ ๋ฏธ์†Œ๋ณ€ํ™”๋Ÿ‰์„ $dA$๋ฅผ ๊ณ„์‚ฐํ•ด๋ณด๋ฉด, $r \cdot dr d\theta$์˜ ๊ผด์ด ๋˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

Triple Integrals

๋งŒ์•ฝ ์ ๋ถ„ ์˜์—ญ์ด ์•„์ฃผ ๋‚˜์ด์Šค ํ•˜๋‹ค๋ฉด, ์‚ผ์ค‘ ์ ๋ถ„์„ ๊ทธ๋ƒฅ $x$, $y$, $z$์— ๋ฐ์ดํ„ฐ ์ ๋ถ„์„ ์„ธ ๋ฒˆ ํ•˜๋ฉด ๋œ๋‹ค.

\[\underset{D}{\iiint} f(x, y, z) dV = \int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) \, dx \, dy \, dz\]

๋‹น์—ฐํ•˜๊ฒŒ๋„ ํ˜„์‹ค์—์„œ ์œ„์™€ ๊ฐ™์ด ๋‹จ์ˆœํ•œ ๊ฒฝ์šฐ๋Š” ๊ฑฐ์˜ ์—†๋‹ค. (์ด์   ์ต์ˆ™ํ•˜๋‹ค;;)


Gilbert Strang - Calculus Vol 3.

3์ฐจ์› ๋ฌผ์ฒด์˜ ์œ„-์•„๋ž˜ ๋šœ๊ป‘์ด ์–ด๋–ค ํ•จ์ˆ˜๋กœ ์ •ํ•ด์ง€๋Š” ๊ฒฝ์šฐ๋‹ค. ์ด ๊ฒฝ์šฐ, ์•„๋ž˜์™€ ๊ฐ™์ด ์ ๋ถ„ ๊ตฌ๊ฐ„์— ํ•ด๋‹น ํ•จ์ˆ˜๋ฅผ ๋„ฃ์–ด์ฃผ๋ฉด ๋œ๋‹ค.

\[\underset{D}{\iint} \left[ \int_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) \, dz \right] \, dx \, dy\]


Gilbert Strang - Calculus Vol 3.

์ด์ค‘์ ๋ถ„์—์„œ ํ–ˆ๋˜ ๊ฒƒ์ฒ˜๋Ÿผ $xy$ ํ‰๋ฉด์˜ ์˜์—ญ $D$๊ฐ€ $y = g(x)$ ๊ผด๋กœ ๋‘ ๋ณ€์ˆ˜ ๊ฐ„์— ํ•จ์ˆ˜ ๊ด€๊ณ„๊ฐ€ ์žˆ์„ ์ˆ˜๋„ ์žˆ๋‹ค. ์ด ๊ฒฝ์šฐ๋Š” ์‚ผ์ค‘ ์ ๋ถ„์ด ์•„๋ž˜์™€ ๊ฐ™์„ ๊ฒƒ์ด๋‹ค.

\[\int_{a}^{b} \int_{g_1(x)}^{g_2(x)} \int_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) \, dz \, dy \, dx\]


Gilbert Strang - Calculus Vol 3.

๋ฐ˜๋Œ€๋กœ $x = h(y)$์™€ ๊ฐ™์€ ์ข…์† ๊ด€๊ณ„๋„ ์žˆ์„ ์ˆ˜๋„ ์žˆ๋‹ค. ์‚ผ์ค‘ ์ ๋ถ„ ์‹์˜ ํ‘œํ˜„์€ ์ƒ๋žต.

์ฃผ์˜ํ•  ์ ์€ ์‚ผ์ค‘์ ๋ถ„์˜ ์˜์—ญ์„ ์ •์˜ํ•˜๋Š” ๋ฌผ์ฒด $V$์˜ ์œ„-์•„๋ž˜ ๋šœ๊ป‘์ด ํ•ญ์ƒ $u(x, y)$์™€ ๊ฐ™์ด $z$ ์ถ•์ด ์•„๋‹ ์ˆ˜๋„ ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. ์œ„-์•„๋ž˜ ๋šœ๊ป‘์ด $y$์ถ•์„ ๋”ฐ๋ผ์„œ ์กด์žฌํ•  ์ˆ˜๋„ ์žˆ๊ณ , $x$์ถ•์„ ๋”ฐ๋ผ์„œ ์กด์žฌํ•  ์ˆ˜๋„ ์žˆ๋‹ค. ์ ๋ถ„ ์˜์—ญ์ด ํ•ญ์ƒ ์œ„์˜ ๊ทธ๋ฆผ๊ณผ ๊ฐ™์€ ํ˜•ํƒœ๋กœ ๋‚˜์˜ฌ ๊ฑฐ๋ผ๊ณ  ์ฐฉ๊ฐํ•˜์ง€ ๋ง ๊ฒƒ!

Triple Integrals in Cylindrical Coordinates

Gilbert Strang - Calculus Vol 3.

3์ฐจ์› ์ƒ์˜ ์ขŒํ‘œ๋ฅผ $P(r, \theta, z)$๋กœ ํ‘œํ˜„ํ•˜๋Š” ์ขŒํ‘œ๊ณ„์ด๋‹ค. ์›์ ์„ ์ค‘์‹ฌ์œผ๋กœ ํ•˜๋Š” ๊ทน์ขŒํ‘œ๊ณ„๋กœ ํ‘œํ˜„๋˜๋ฉด์„œ, ๋†’์ด $z$๊ฐ€ ์ถ”๊ฐ€๋œ ๋…€์„์œผ๋กœ ์›๊ธฐ๋‘ฅ, ํฌ๋ฌผ์„  ๋“ฑ์„ ํ‘œํ˜„ํ•˜๊ธฐ์— ์‰ฌ์šด ์ขŒํ‘œ๊ณ„์ด๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด, ์•„๋ž˜์™€ ๊ฐ™์€ ๋„ํ˜•์˜ ๋ถ€ํ”ผ๋ฅผ ๊ตฌํ•˜๋Š” ๋ฐ์— ์ ์ ˆํ•˜๋‹ค.

Thomas Calculus 13th ed. - Example Problem

์œ„์˜ ๋„ํ˜•์˜ ๊ฒฝ์šฐ, ๋ถ€ํ”ผ๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด์„œ ์•„๋ž˜์˜ ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

\[V = \int_{0}^{2\theta} \int_{0}^{2} \int_{0}^{r^2} 1 \cdot dz \, r \, dr \, d\theta\]

$z$์ถ• ๋ฐฉํ–ฅ์œผ๋กœ ๋จผ์ € ์ ๋ถ„ํ•˜๊ณ , ๊ทน์ขŒํ‘œ์— ๋Œ€ํ•œ ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.


Cylindrical Coordinates์—์„œ๋Š” ๋ฏธ์†Œ๋ถ€ํ”ผ๊ฐ€ ์•„๋ž˜์™€ ๊ฐ™์ด ํ‘œํ˜„๋œ๋‹ค.

CLP Calculus Textbook

\[\Delta V = \Delta z \cdot r \Delta r \cdot \Delta \theta\]

๊ทน์ขŒํ‘œ์˜ Polar Rectangular์—์„œ ๋†’์ด $\Delta z$๋งŒ ์ถ”๊ฐ€๋œ ๊ผด์ด๋‹ค.

Triple Integrals in Spherical Coordinates

CLP Calculus Textbook

3์ฐจ์› ์ƒ์˜ ์ขŒํ‘œ๋ฅผ $P(\rho, \phi, \theta)$๋กœ ํ‘œํ˜„ํ•˜๋Š” ์ขŒํ‘œ๊ณ„์ด๋‹ค. ์›์ ์„ ์ค‘์‹ฌ์œผ๋กœ ์œ„๋„(longitude, $\theta$)์™€ ๊ฒฝ๋„(latitude, $\phi$)๋กœ ์ขŒํ‘œ๋ฅผ ํ‘œํ˜„ํ•œ๋‹ค. ์ด๋•Œ, ํ—ท๊ฐˆ๋ฆฌ์ง€ ๋ง์•„์•ผ ํ•  ๊ฒƒ์€ ๊ทน์ขŒํ‘œ๊ณ„์ฒ˜๋Ÿผ $(r, \theta)$๊ฐ€ ์•„๋‹ˆ๋ผ ์›์ ์œผ๋กœ๋ถ€ํ„ฐ ๋–จ์–ด์ง„ ๊ธธ์ด $\rho$๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค๋Š” ์ ์ด๋‹ค.

$xyz$ ์ขŒํ‘œ๊ณ„์— ๋Œ€์‘ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\begin{aligned} x &= \rho \sin \phi \cos \theta \\ y &= \rho \sin \phi \sin \theta \\ z &= \rho \cos \phi \end{aligned}\]

๊ตฌ๋ฉด์ขŒํ‘œ๊ณ„๋Š” ์•„๋ž˜์™€ ๊ฐ™์€ ๋„ํ˜•์˜ ๋ถ€ํ”ผ๋ฅผ ๊ตฌํ•˜๋Š” ๋ฐ์— ์ ์ ˆํ•˜๋‹ค. ์•„์ด์Šคํฌ๋ฆผ ์ฝ˜ ๐Ÿจ

Thomas Calculus 13th ed. - Example Problem

๋ถ€ํ”ผ๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด์„œ ์•„๋ž˜์˜ ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

\[V = \int_{0}^{2\theta} \int_{0}^{\pi/3} \int_{0}^{1} 1 \cdot \rho^2 \sin \phi \cdot d \rho \, d \phi \, d\theta\]

์ ๋ถ„์‹์—์„œ ๊ฐ‘์ž๊ธฐ $\rho^2 \sin \phi$๊ฐ€ ํŠ€์–ด๋‚˜์™”๋Š”๋ฐ, ์š”๊ฒƒ์€ ๋ฏธ์†Œ ๋ถ€ํ”ผ ๋ณ€ํ™”๋Ÿ‰์—์„œ ์œ ๋„๋œ๋‹ค.

APEX Calculus Textbook

\[\Delta V = \Delta \rho \cdot (\rho \, \Delta \phi) \cdot (\rho \, \sin \phi \, \Delta \theta)\]

ํ˜น์‹œ, $\rho^2 \sin \phi$๊ฐ€ ๊ธฐ์–ต์ด ์•ˆ ๋‚œ๋‹ค๋ฉด ์š” โ€œSpherical Wedgeโ€์˜ ๋ถ€ํ”ผ๊ฐ€ ์œ ๋„๋˜๋Š” ์›๋ฆฌ๋ฅผ ๋– ์˜ฌ๋ฆฌ์ž ๐Ÿ™‚

Transformation in a plane

1์ฐจ์›์—์„œ์˜ ์น˜ํ™˜(Transformation)๊ณผ ์น˜ํ™˜์ ๋ถ„์€ $x = g(t)$๋ผ๋Š” ์‹์—์„œ ์•„๋ž˜์™€ ๊ฐ™์€ ๋ฏธ์†Œ ๋ณ€ํ™”๋Ÿ‰์„ ์œ ๋„ํ–ˆ๋‹ค.

\[dx = g'(t) \, dt\]

์ด๋Ÿฐ 1์ฐจ์›์—์„œ์˜ ์น˜ํ™˜์„ 2์ฐจ์›์—์„œ ํ•œ๋ฒˆ ์ƒ๊ฐํ•ด๋ณด์ž. 2์ฐจ์› ํ‰๋ฉด์—์„œ $(u, v)$ ์ขŒํ‘œ๋ฅผ $(x, y)$ ์ขŒํ‘œ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๋ณ€ํ™˜ ํ•จ์ˆ˜ $T$๋ฅผ ์ƒ์ƒ ํ•ด๋ณด์ž.

Gilbert Strang - Calculus Vol 3.

\[T(u, v) = (x, y)\]

์ด ํ•จ์ˆ˜๋ฅผ ๋ฒกํ„ฐ ํ•จ์ˆ˜ $\mathbf{r}(u, v)$์˜ ํ˜•ํƒœ๋กœ ํ‘œํ˜„ํ•ด, ์„ฑ๋ถ„ ๋ณ„๋กœ ์‚ดํŽด๋ณด๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\mathbf{r}(u, v) = g(u, v) \mathbf{i} + h(u, v) \mathbf{j}\]


$xy$ ํ‰๋ฉด ์œ„์˜ ์  $(x_0, y_0)$์—์„œ ์˜์—ญ $R$์˜ lower side์—์„œ ๊ทธ๋ฆฌ๋Š” ๊ณก์„  $\mathbf{r}(u, v_0)$์— ์ ‘ํ•˜๋Š” ์ง์„ ์˜ ๋ฒกํ„ฐ๋ฅผ ๊ตฌํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\mathbf{r}_u = g_u(u_0, v_0) \mathbf{i} + h_u(u_0, v_0) \mathbf{j}\]

๊ฐ™์€ ๋ฐฉ์‹์œผ๋กœ ์˜์—ญ $R$์—์„œ left side์˜ ๊ณก์„ ์— ์ ‘ํ•˜๋Š” ์ง์„  ๋ฒกํ„ฐ๋ฅผ ๊ตฌํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\mathbf{r}_v = g_v(u_0, v_0) \mathbf{i} + h_v(u_0, v_0) \mathbf{j}\]

์šฐ๋ฆฌ๋Š” ๋ณ€ํ™˜ $T$์˜ ๊ฒฐ๊ณผ๋กœ ๋งŒ๋“ค์–ด์ง„ ์˜์—ญ $R$์˜ ๋„“์ด๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด ์•„๋ž˜์™€ ๊ฐ™์ด ํ• ์„ (secant line)์„ ๊ทธ์–ด์„œ ๊ทผ์‚ฌ์น˜๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.

Thomas Calculus 13th ed.

์ด ํ• ์„  ๋ฒกํ„ฐ๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ์ฃผ์–ด์งˆ ๊ฒƒ์ด๋‹ค.

\[\begin{aligned} \mathbf{a} &= \mathbf{r}(u_0 + \Delta u, \, v_0) - \mathbf{r}(u_0, \, v_0) \\ \mathbf{b} &= \mathbf{r}(u_0, \, v_0 + \Delta v) - \mathbf{r}(u_0, \, v_0) \\ \end{aligned}\]

์ด๋•Œ, ์•„๊นŒ ์œ„์—์„œ ๊ตฌํ•œ ์ ‘์„  ๋ฒกํ„ฐ $\mathbf{r}_u$์™€ $\mathbf{r}_v$์˜ ์ •์˜๋ฅผ ์‚ดํŽด๋ณด๋ฉด,

\[\mathbf{r}_u = \lim_{\Delta u \rightarrow 0} \frac{\mathbf{r}(u_0 + \Delta u, \, v_0) - \mathbf{r}(u_0, \, v_0)}{\Delta u}\]

์œ„์˜ ์‹์„ ํ™œ์šฉํ•ด $\Delta u$๋ฅผ ์ขŒ๋ณ€์œผ๋กœ ์˜ฎ๊ธฐ๋ฉด, ์•„๋ž˜์™€ ๊ฐ™์€ ๊ทผ์‚ฌ์‹์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.

\[\begin{aligned} \Delta u \cdot \mathbf{r}_u &= \mathbf{r}(u_0 + \Delta u, \, v_0) - \mathbf{r}(u_0, \, v_0) \\ \Delta v \cdot \mathbf{r}_v &= \mathbf{r}(u_0, \, v_0 + \Delta v) - \mathbf{r}(u_0, \, v_0) \end{aligned}\]


Thomas Calculus 13th ed.

์œ„์˜ ์‹์„ ํ™œ์šฉํ•ด ์˜์—ญ $R$์˜ ๋„“์ด์˜ ๊ทผ์‚ฌ๊ฐ’์„ ๋‘ ๋ฒกํ„ฐ $\Delta u \cdot \mathbf{r}_u$, $\Delta v \cdot \mathbf{r}_v$์˜ ์™ธ์ ์œผ๋กœ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค.

\[\left| (\Delta u \cdot \mathbf{r}_u) \times (\Delta v \cdot \mathbf{r}_v) \right| = \left| \mathbf{r}_u \times \mathbf{r}_v \right| \cdot \Delta u \Delta v\]

์ด์ œ ๋‚จ์€ ๊ฑด ์™ธ์  $\mathbf{r}_u \times \mathbf{r}_v$๋ฅผ ๊ตฌํ•˜๋Š” ๊ฒƒ์ด ๋‚จ์•˜๋‹ค. ์ด๊ฒƒ์€ ์•„๋ž˜์™€ ๊ฐ™์€ ํ–‰๋ ฌ์‹์„ ๊ตฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

Thomas Calculus 13th ed.

Jacobian

2์ฐจ์›์—์„œ์˜ ๋ณ€ํ™˜ $T$์—์„œ ์™ธ์  $\mathbf{r}_u \times \mathbf{r}_v$์˜ ํ–‰๋ ฌ์‹์„ โ€œJacobianโ€๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. ์ •์˜๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

๊ทธ๋ฆฌ๊ณ  ๋ณ€ํ™˜ $T$๋กœ ์ธํ•ด ๋งŒ๋“ค์–ด์ง€๋Š” ๋„“์ด ๋ฏธ์†Œ๋ณ€ํ™”๋Ÿ‰์„ ์•„๋ž˜์™€ ๊ฐ™์ด Jacobian์œผ๋กœ ์‰ฝ๊ฒŒ ํ‘œ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค.

\[\Delta A = \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \Delta u \Delta v\]

Thomas Calculus 13th ed.


์ด์ œ ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ด์ค‘ ์ ๋ถ„์‹์—์„œ ์น˜ํ™˜ ์ ๋ถ„์„ ํ–ˆ์„ ๋•Œ, ์ ๋ถ„์‹์ด ์–ด๋–ป๊ฒŒ ๋ณ€ํ•˜๋Š”์ง€ ์ ์–ด๋ณด๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\underset{R}{\iint} f(x, y) dA = \underset{R}{\iint} f(x(u, v), y(u, v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du dv\]

๋„“์ด ๋ฏธ์†Œ๋ณ€ํ™”๋Ÿ‰์ด $dA$๋„ ํ•จ๊ป˜ ์น˜ํ™˜๋œ๋‹คโ€ฆ!!


3์ฐจ์› ์น˜ํ™˜์—์„œ๋„ ์•ผ์ฝ”๋น„์•ˆ์ด ์ •์˜๋˜๊ณ , ์ด๊ฒƒ์„ ์‚ผ์ค‘์ ๋ถ„์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์ง€๋งŒโ€ฆ ํฌ์ŠคํŠธ๊ฐ€ ๋„˜ ๊ธธ์–ด์กŒ์œผ๋‹ˆ ์ด์   ์ƒ๋žตโ€ฆ!!

Categories:

Updated: