Gradient Fields, Conservative Vector Field, Fundamental Theorem for Line Integrals

9 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฏธ์ ๋ถ„ํ•™ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

Gradient Fields

์–ด๋–ค 2๋ณ€์ˆ˜ ํ•จ์ˆ˜ $f(x, y)$๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•˜์ž. ์ด์ „ ์ฑ•ํ„ฐ์—์„œ ์ด 2๋ณ€์ˆ˜ ํ•จ์ˆ˜์˜ ํ•œ ์  $(x_0, y_0)$์—์„œ ์ •์˜ํ•œ Gradient Vector๋ฅผ ๊ธฐ์–ตํ•˜๋Š”๊ฐ€?

\[\nabla f(x, y) = f_x(x, y) \, \mathbf{i} + f_y(x, y) \, \mathbf{j}\]

์ด๊ฒƒ์„ ํ•œ ์ ์ด ์•„๋‹ˆ๋ผ ํ•จ์ˆ˜ $f(x, y)$์˜ ์ •์˜์—ญ ์ „์ฒด์—์„œ ์ •์˜ํ•œ ๊ฒƒ์ด โ€œGradient Fieldโ€๋‹ค. ์ด๊ฒƒ์€ ์Šค์นผ๋ผ ํ•จ์ˆ˜์ธ $z = f(x, y)$๋กœ๋ถ€ํ„ฐ ์œ ๋„๋˜๋Š” ๋ฒกํ„ฐ ํ•„๋“œ(= ๋ฒกํ„ฐ ํ•จ์ˆ˜)๋‹ค.

Conservative Vector Field, and Potential Function

๋ฐ˜๋Œ€๋กœ ์–ด๋–ค ๋ฒกํ„ฐ ํ•„๋“œ๋Š” ๊ทธ ์›๋ณธ์ด ์–ด๋–ค ์Šค์นผ๋ผ ํ•จ์ˆ˜์ธ ๊ฒƒ๋“ค์ด ์žˆ๋‹ค. ์ด๋Ÿฐ ๋ฒกํ„ฐ ํ•„๋“œ๋ฅผ โ€œConservative Vector Fieldโ€๋ผ๊ณ  ํ•œ๋‹ค. ์ด๋“ค์€ Gradient $\nabla$ ๋˜๊ธฐ ์ „์˜ ์›์‹œ ์Šค์นผ๋ผ ํ•จ์ˆ˜๋ฅผ ์ฐพ์„ ์ˆ˜๋„ ์žˆ๋‹ค.

A vector field $\mathbf{F}$ is called a โ€œconservative vector fieldโ€ if it is the gradient of some scalar function.

์ด๋Ÿฐ Conservative Vector Field์˜ ์›์‹œ ์Šค์นผ๋ผ ํ•จ์ˆ˜๋Š” โ€œPotential Functionโ€œ๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค.

Line Integrals

์–ด๋–ค ๊ณก์„ ์„ ๋”ฐ๋ผ ํ•จ์ˆ˜ $f(x, y)$์— ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์„ โ€œ์„ ์ ๋ถ„โ€์ด๋ผ๊ณ  ํ•œ๋‹ค.

Scalar Line Integral

\[\int_C f(x, y) \, ds = \int_C f(x(t), y(t)) \cdot \sqrt{x'(t)^2 + y'(t)^2} \, dt\]

Vector Line Integral

\[\int_C \mathbf{F}(x, y) \cdot d\mathbf{r} = \int_C \mathbf{F}_1 \, dx + \mathbf{F}_2 \, dy + \mathbf{F}_3 \, dz\]

์„ ์ ๋ถ„ ๋ถ€๋ถ„์€ ๊ณต๋ถ€ํ•˜๋‹ค๊ฐ€ ๋„ˆ๋ฌด ํ—ท๊ฐˆ๋ ค์„œ ๋ณ„๋„ ํฌ์ŠคํŠธ๋กœ ์ •๋ฆฌํ–ˆ๋‹ค. ์„ ์ ๋ถ„์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ ์•„๋ž˜ ํฌ์ŠคํŠธ ์ฐธ๊ณ  ใ…Žใ…Ž

โžก๏ธ Arc Length์™€ Line Integral

Fundamental Theorem for Line Integrals

Let $C$ be a smooth curve given by the vector function $\mathbf{r}(t)$ for $a \le t \le b$.

Let $f(x, y)$ be a differentiable function of two or three variables whose gradient vector $\nabla f$ is continuous on $C$.

Then,

\[\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))\]

$f(x)$์˜ ์ ๋ถ„์„ ์‹œ์ž‘์ ๊ณผ ๋์ ์—์„œ์˜ ์›์‹œํ•จ์ˆ˜ $F(x)$์˜ ๊ฐ’์˜ ์ฐจ์ด๋กœ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๋ฏธ์ ๋ถ„ํ•™์˜ ๊ธฐ๋ณธ์ •๋ฆฌ์˜ ์„ ์ ๋ถ„ ๋ฒ„์ „์ด๋‹ค. ์„ ์ ๋ถ„์—์„œ๋Š” ์ ๋ถ„ํ•˜๋ ค๋Š” ํ•จ์ˆ˜๊ฐ€ Gradient Field๋ผ๋ฉด, ์‹œ์ž‘์ ๊ณผ ๋์ ์—์„œ ์›์‹œํ•จ์ˆ˜์˜ ๊ฐ’์˜ ์ฐจ์ด๋กœ ์ ๋ถ„์„ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ •๋ฆฌ์ด๋‹ค. ์ ๋ถ„์ด ๋ฌด์ง€๋ฌด์ง€ ์‰ฌ์›Œ์ง„๋‹ค๋Š” ๋ง!!

์ ๋ถ„ํ•˜๋ ค๋Š” ํ•จ์ˆ˜๊ฐ€ Gradient Field๋ผ๋Š” ๋ง์€ ๊ณง, ๊ทธ ํ•จ์ˆ˜๊ฐ€ โ€œConservative Vector Fieldโ€์ž„์„ ๋งํ•œ๋‹ค. ์ฆ‰, Conservative Vector Field์—์„œ ์„ฑ๋ฆฝํ•˜๋Š” ์ •๋ฆฌ๊ฐ€ โ€œ์„ ์ ๋ถ„์˜ ๊ธฐ๋ณธ์ •๋ฆฌโ€์ธ ๊ฒƒ. ์ ๋ถ„๊ฐ’์„ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด์„œ ์ ์ ˆํ•œ Potential Function๋งŒ ์ฐพ์œผ๋ฉด ๋œ๋‹ค.

Work done by Gravitational Field

Find the work done by the gravitational field

\[\mathbf{F}(\mathbf{x}) = - \frac{mMG}{\| \mathbf{x} \|^3} \mathbf{x}\]

in moving a particle with mass $m$ from $(0, 0, 0)$ to $(1, 1, 1)$ along a piecewise-smooth curve $C$.

์œ„์˜ ์„ ์ ๋ถ„์„ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋ฌธ์ œ์— ์ œ์‹œ๋œ piecewise-smooth curve $C$๋ฅผ ์ฐพ์„ ํ•„์š˜ ์—†๋‹ค. $\mathbf{F}(\mathbf{x})$์˜ Potential Function๋งŒ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค๋ฉด, ์„ ์ ๋ถ„์˜ ๊ธฐ๋ณธ์ •๋ฆฌ๋กœ ์‹œ์ ๊ณผ ์ข…์ ์—์„œ์˜ ๊ฐ’์œผ๋กœ ์ ๋ถ„์„ ๊ณ„์‚ฐํ•˜๋ฉด ๋˜๊ธฐ ๋•Œ๋ฌธ.

์ค‘๋ ฅ์žฅ $\mathbf{F}(\mathbf{x})$์˜ potential function์€ ์•„๋ž˜์™€ ๊ฐ™์ด ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค.

\[f(x, y, z) = \frac{mMG}{\sqrt{x^2 + y^2 + z^2}}\]

potential function์„ ์ฐพ์•˜์œผ๋‹ˆ ์„ ์ ๋ถ„์˜ ๊ธฐ๋ณธ์ •๋ฆฌ๋กœ ์ ๋ถ„์„ ๊ณ„์‚ฐํ•ด๋ณด์ž.

\[W = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \nabla f \cdot d\mathbf{r} = f(1, 1, 1) - f(0, 0, 0) =\frac{mMG}{3}\]

Independent of Path

์‹œ์ ๊ณผ ์ข…์ ์€ ๊ฐ™์ง€๋งŒ, ๊ฒฝ๋กœ๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ piecewise-smooth curve $C_1$, $C_2$๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•˜์ž.

์ผ๋ฐ˜์ ์ธ ๋ฒกํ„ฐ ํ•„๋“œ์—์„œ๋Š” ๋‘ ์„ ์ ๋ถ„์˜ ๊ฐ’์ด ๊ฐ™์ง€ ์•Š๋‹ค.

\[\int_{C_1} \mathbf{F} \cdot d \mathbf{r} \ne \int_{C_2} \mathbf{F} \cdot d \mathbf{r}\]

๊ทธ๋Ÿฌ๋‚˜ ๋ฒกํ„ฐ ํ•„๋“œ๊ฐ€ Conservative Vector Field๋ผ๋ฉด, ๋‘ ์„ ์ ๋ถ„์˜ ๊ฐ’์ด ๊ฐ™์•„์ง„๋‹ค.

\[\int_{C_1} \nabla f \cdot d \mathbf{r} = \int_{C_2} \nabla f \cdot d \mathbf{r}\]

์™œ๋ƒํ•˜๋ฉด, ๋‘ ์„ ์ ๋ถ„์ด ์‹œ์ , ์ข…์ ์—์„œ์˜ potential function์˜ ๊ฐ’ ์ฐจ์ด๋กœ ๊ณ„์‚ฐ๋˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

์ด๊ฒƒ์„ ์ •๋ฆฌํ•œ ๊ฒƒ์ด ์•„๋ž˜์˜ ๋ฌธ์žฅ์ด๋‹ค.

Line integrals of a continuous conservative vector field with a differentiable potential function are โ€œindependent of pathโ€.

On a Closed Curve

์ด๋ฒˆ์—๋Š” ๋‹ซํžŒ ๊ณก์„  $C$์—์„œ Conservative Vector Field์˜ ์ ๋ถ„์„ ์‚ดํŽด๋ณด์ž. ๊ฒฐ๋ก ๋ถ€ํ„ฐ ๋งํ•˜๋ฉด, ํ๊ณก์„ ์—์„œ์˜ ์„ ์ ๋ถ„์˜ ๊ฐ’์€ ํ•ญ์ƒ 0์ด๋‹ค.

\[\int_{C} \mathbf{F} \cdot d\mathbf{r} = 0\]

์œ„์˜ ์„ ์ ๋ถ„์„ ๊ฒฝ๋กœ $C_1$, $C_2$๋กœ ๋ถ„ํ• ํ•˜์—ฌ ์ƒ๊ฐํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๊ธฐ ๋•Œ๋ฌธ.

\[\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} - \int_{-C_2} \mathbf{F} \cdot d\mathbf{r} = 0\]

(์š”๊ธฐ์—์„œ opposite direction ์ ๋ถ„ ๋ณผ ๋•Œ, ์Šค์นผ๋ผ ์„ ์ ๋ถ„์ด๋ž‘ ํ—ท๊ฐˆ๋ ค์„œ ํ•œ์ฐธ ๊ณ ๋ฏผํ•จโ€ฆ ใ…‹ใ…‹)

Theorems

Independent of Path implies Conservative

๋งŒ์•ฝ ์ฃผ์–ด์ง„ ๋ฒกํ„ฐ ํ•„๋“œ์˜ ์ ๋ถ„์ด ์ฃผ์–ด์ง„ ๋„๋ฉ”์ธ $D$์—์„œ ๋ชจ๋‘ independent of path๋ผ๋ฉด, ํ•ด๋‹น ๋ฒกํ„ฐ ํ•„๋“œ๋Š” ๋„๋ฉ”์ธ $D$ ์œ„์—์„œ Conservative Field์ด๋‹ค.

๋ณธ๋ž˜ Conservative Field๋ฉด, Independent of path๋ฅผ ๋งŒ์กฑํ•˜๋Š”๋ฐ, ๊ทธ ์—ญ ๋ช…์ œ๋„ ์„ฑ๋ฆฝํ•จ์„ ๋งํ•œ๋‹ค.

If Conservative Field, then

๋งŒ์•ฝ ๋ฒกํ„ฐ ํ•„๋“œ $\mathbf{F} = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j}$๊ฐ€ conservative vector field์ด๊ณ , $P$, $Q$ ํ•จ์ˆ˜๊ฐ€ ๋„๋ฉ”์ธ $D$ ์œ„์—์„œ continuous first-order partial derivative๋ฅผ ๊ฐ€์ง„๋‹ค๋ฉด, ์•„๋ž˜ ๋“ฑ์‹์„ ๋งŒ์กฑํ•œ๋‹ค.

\[\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}\]


์ฆ๋ช…์€ ๊ฐ„๋‹จํ•œ๋ฐ, ๋ฒกํ„ฐ ํ•„๋“œ $\mathbf{F}$๊ฐ€ conservative ํ•˜๋ฏ€๋กœ, ์•„๋ž˜ ์‹์„ ๋งŒ์กฑํ•˜๋Š” potential function $f$๊ฐ€ ์กด์žฌํ•œ๋‹ค.

\[\mathbf{F} = \nabla f\]

๋”ฐ๋ผ์„œ ๊ฐ ์„ฑ๋ถ„ $P$, $Q$๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด 1์ฐจ ํŽธ๋ฏธ๋ถ„์œผ๋กœ ์ •์˜๋œ๋‹ค.

\[\begin{aligned} P(x, y) &= \frac{\partial f}{\partial x} \\ Q(x, y) &= \frac{\partial f}{\partial y} \end{aligned}\]

์ด์ œ, $P$, $Q$ ์„ฑ๋ถ„์— ๋‹ค์‹œ $y$์™€ $x$์— ๋Œ€ํ•ด ํŽธ๋ฏธ๋ถ„ ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\frac{\partial P}{\partial y} = \frac{\partial f}{\partial y \partial x} = \frac{\partial f}{\partial x \partial y} = \frac{\partial Q}{\partial x}\]

$\blacksquare$

Condition of conservative field

๋ฐ”๋กœ ์œ„์—์„œ ์‚ดํŽด๋ณธ ๋ช…์ œ์˜ ์—ญ ๋ช…์ œ๊ฐ€ ์–ธ์ œ ์„ฑ๋ฆฝํ•˜๋Š”์ง€๋„ ์‚ดํŽด๋ณด์ž.

Let $\mathbf{F} = P\mathbf{i} + Q \mathbf{j}$ be a vector field on an open simply-connected region $D$.

Suppose that $P$ and $Q$ have continuous first-order derivatives and satisfy $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ throughout $D$.

Then, $\mathbf{F}$ is conservative.

์ฃผ์–ด์ง„ ๋ฒกํ„ฐ ํ•„๋“œ๊ฐ€ Conservative ํ•œ์ง€ ํŒ๋‹จํ•˜๋Š” ๋˜ ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•์ด๋‹ค. Conservative ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•˜๊ธฐ ์œ„ํ•ด์„  $P$, $Q$ ์„ฑ๋ถ„์˜ ํŽธ๋ฏธ๋ถ„ ๊ฐ’์ด ์ผ์น˜ํ•œ์ง€๋ฅผ ํ™•์ธํ•˜๋ผ๋Š” ๋ง.


๊ทธ๋Ÿฐ๋ฐ ์—ฌ๊ธฐ์„œ ์ฒ˜์Œ ๋“ฑ์žฅํ•œ ๊ฐœ๋…์ด โ€œsimply-connected regionโ€์ด๋‹ค. ๋Œ€์ถฉ ๋‚˜๋ˆ ์„œ ์„ค๋ช…ํ•˜๋ฉด,

Gilbert Strang - Calculus Vol 3.

โ€œsimple curveโ€๋Š” ๊ณก์„  ์ž์ฒด๊ฐ€ ์ž๊ธฐ ์ž์‹ ๊ณผ ๋‹ค์‹œ ๋งŒ๋‚˜์ง€ ์•Š๋Š” ๋‚˜์ด์Šคํ•œ ๊ณก์„ ์„ ๋งํ•œ๋‹ค.


โ€œsimply-connected regionโ€์€ ์˜์—ญ ์œ„์— ๊ทธ๋ฆด ์ˆ˜ ์žˆ๋Š” ๋ชจ๋“  simple closed curve ์•ˆ์˜ ์ ์ด ๋ชจ๋‘ ์˜์—ญ $D$์— ์†ํ•˜๋Š” ์ ๋“ค์ธ ๊ฒฝ์šฐ๋ฅผ ๋งํ•œ๋‹ค.

Gilbert Strang - Calculus Vol 3.

๋งŒ์•ฝ ์˜์—ญ ์•ˆ์— ๊ตฌ๋ฉ(hole)์ด ์žˆ๋‹ค๋ฉด, ๊ทธ ๊ตฌ๋ฉ์„ ๋‘˜๋Ÿฌ์‹ธ๋Š” simple closed curve๊ฐ€ ๋งŒ๋“œ๋Š” ์˜์—ญ ์•ˆ์—๋Š” ์˜์—ญ $D$์— ์†ํ•˜๋Š” ์ ๋„ ์žˆ๊ฒ ์ง€๋งŒ, ์†ํ•˜์ง€ ์•Š๋Š” ์ ๋„ ์ƒ๊ธด๋‹ค. ๋”ฐ๋ผ์„œ 2์ฐจ์›์—์„œ๋Š” ๊ตฌ๋ฉ ์—†๋Š” ์˜์—ญ์„ ์ผ์ปซ๋Š”๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

Categories:

Updated: