๋ฐœ์‚ฐ์— ๋Œ€ํ•œ ๋ถ€ํ”ผ ์ ๋ถ„์€, ๊ฒฝ๊ณ„ ๊ณก๋ฉด์— ๋Œ€ํ•œ ๋ฉด์ ๋ถ„๊ณผ ๊ฐ™๋‹ค๋Š” ์ •๋ฆฌ.

2 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฏธ์ ๋ถ„ํ•™ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

์ด๋ฒˆ ์ฑ•ํ„ฐ๋Š” Joel Feldman - CLP Calculus ๊ต์žฌ์˜ ๋„์›€์„ ๋งŽ์ด ๋ฐ›์•˜๋‹ค.

Divergence Theorem

์–ด๋–ค ๋ฌผ์ฒด $V$์— ๋Œ€ํ•œ ๋ฒกํ„ฐ ์žฅ์˜ ๋ฐœ์‚ฐ(div) ๊ฐ’($\nabla \cdot \mathbf{F}$)์„ ๋ถ€ํ”ผ ์ ๋ถ„ํ•˜๋Š” ๊ฒƒ์€ ๋ถ€ํ”ผ์˜ ๊ฒฝ๊ณ„ ํ‘œ๋ฉด $\partial V$์— ๋Œ€ํ•œ ๋ฒกํ„ฐ์žฅ์˜ ๋ฉด์ ๋ถ„์„ ๊ณ„์‚ฐํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™๋‹ค๋Š” ์ •๋ฆฌ. ์ˆ˜ํ•™์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

Let $V$ be a bounded solid with a piecewise smooth surface $\partial V$.

Let $\mathbf{F}$ be a vector field that has continuous first partial derivatives at every point of $V$.

Then

\[\iint_{\partial V} \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_{V} \nabla \cdot \mathbf{F} \, dV\]

์ด๋•Œ, ์ฃผ์˜ํ•  ์ ์€ ์ •๋ฆฌ๊ฐ€ ์„ฑ๋ฆฝํ•˜๊ธฐ ์œ„ํ•ด์„  ๋ถ€ํ”ผ $V$ ์•ˆ์˜ ๋ชจ๋“  ์ ์—์„œ ๋ฒกํ„ฐ์žฅ $\mathbf{F}$๊ฐ€ ์—ฐ์†์ด๊ณ , 1์ฐจ ํŽธ๋ฏธ๋ถ„ ๊ฐ’์„ ๊ฐ€์ ธ์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์ด๊ฒƒ์— ๋Œ€ํ•œ ์˜ˆ์™ธ๊ฐ€ ์•„๋ž˜์™€ ๊ฐ™์ด ์›์ ์—์„œ ์ •์˜๋˜์ง€ ์•Š๋Š” ๋ฒกํ„ฐ์žฅ์ด๋‹ค. ๋ฌผ๋ฆฌ์—์„œ ์ž์ฃผ ๋ณด์ด๋Š” ๋…€์„.

\[\mathbf{F} = \frac{\mathbf{r}}{\left| \mathbf{r} \right|^3}\]

with Stokes Theorem

CLP Calculus Textbook

[curl ๋ฒกํ„ฐ์˜ ๋ฉด์ ๋ถ„์„ ๋ถ€ํ”ผ ์ ๋ถ„์œผ๋กœ ํ•ด์„ by ๋ฐœ์‚ฐ ์ •๋ฆฌ]

\[\iint_{\partial V} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \iiint_{V} \nabla \cdot (\nabla \times \mathbf{F}) \, dV = 0\]

์ง์ „ ํฌ์ŠคํŠธ์ธ ์Šคํ† ์Šคํฌ ์ •๋ฆฌ์—์„œ ๋‹ซํžŒ ๊ณก๋ฉด์— ๋Œ€ํ•œ ํšŒ์ „ ๋ฒกํ„ฐ์žฅ์˜ ๋ฉด์ ๋ถ„์˜ ๊ฐ’์€ ํ•ญ์ƒ 0์ด ๋œ๋‹ค๋Š” ๊ฒƒ์„ ์‚ดํŽด๋ณด์•˜๋‹ค. ๊ทธ๋ ‡๊ฒŒ ๋˜๋Š” ์ด์œ ๋ฅผ 2๊ฐ€์ง€๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ์—ˆ๋Š”๋ฐ,

๋‹ซํžŒ ๊ณก๋ฉด์„ ๋‘ ๊ฐœ์˜ ๊ณก๋ฉด $S_1$, $S_2$๋กœ ๋ถ„ํ• ํ•˜๊ณ , ์Šคํ† ์Šคํฌ ์ •๋ฆฌ์— ์˜ํ•ด ๋‘ ๊ณก๋ฉด์˜ ์ ๋ถ„์„ ๊ฒฝ๊ณ„ ๊ณก์„ ์— ๋Œ€ํ•œ ์„ ์ ๋ถ„์œผ๋กœ ๋ฐ”๊พผ๋‹ค. ์ด๋•Œ, ๋‘ ์„ ์ ๋ถ„์ด ๊ฐ™์€ ๊ฒฝ๊ณ„ ๊ณก์„ ์„ ์„œ๋กœ ๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ์œผ๋กœ ์ ๋ถ„ ํ•˜๋ฏ€๋กœ, ์„ ์ ๋ถ„์ด ์„œ๋กœ ์ƒ์‡„๋œ๋‹ค. ๋”ฐ๋ผ์„œ ์ ๋ถ„๊ฐ’์€ 0.

๋‹ค๋ฅธ ํ•ด์„์œผ๋กœ๋Š”

๋ฉด์ ๋ถ„์ด ๋‹ซํžŒ ๊ณก๋ฉด์ด๋ฏ€๋กœ, ๊ทธ๊ฒƒ์ด ์–ด๋–ค ๋ฌผ์ฒด $V$์˜ ๊ฒฝ๊ณ„ ๊ณก๋ฉด์ด๋ผ๊ณ  ์ƒ๊ฐํ•ด๋ณด์ž. ๊ทธ๋Ÿฌ๋ฉด, ๋ฐœ์‚ฐ ์ •๋ฆฌ์— ์˜ํ•ด ๋ฉด์ ๋ถ„์ด ๋ถ€ํ”ผ ์ ๋ถ„์œผ๋กœ ๋ฐ”๋€Œ๊ณ , ํšŒ์ „ ๋ฒกํ„ฐ์žฅ $\nabla \times \mathbf{F}$์— ๋ฐœ์‚ฐ ์—ฐ์‚ฐ์ž๋ฅผ ์ ์šฉํ•ด ๋ฐœ์‚ฐ์— ๋Œ€ํ•œ ์ ๋ถ„์œผ๋กœ ๋ฐ”๋€๋‹ค. ์ด๋•Œ, $\nabla \cdot (\nabla \times \mathbf{F}) = 0$์ด๋ฏ€๋กœ ์ ๋ถ„๊ฐ’์€ 0.

An Application of the Divergence Theorem

๋‹ค๋ฅธ ๊ณผ๋ชฉ ๊ณต๋ถ€ํ•˜๋ฉด์„œ ๋ณต์Šตํ•  ๋•Œ, ๋‚ด์šฉ์„ ์ข€ ์ฑ„์›Œ๋ณด์žโ€ฆ ํž›โ€ฆ!

the Heat Equation

TDB

Buoyancy

TDB

Categories:

Updated: