Total Differential๊ณผ Implicit Equation์˜ ๊ด€๊ณ„์— ๋Œ€ํ•ด ๐ŸŒ€

7 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค๋งŒโ€ฆ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์€ ์กธ์—…์‹œํ—˜ ๋Œ€์ƒ ๊ณผ๋ชฉ์ด ์•„๋‹ˆ๋ผ๋Š” ๊ฑธ ๋‚˜์ค‘์— ์•Œ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹คโ€ฆ OTLโ€ฆ ๊ทธ๋ž˜๋„ ์ด์™• ์‹œ์ž‘ํ•œ ๊ฑฐ ๋‹ค์‹œ ๋ณต์Šต ์ข€ ํ•ด๋ด…์‹œ๋‹ค! ๐Ÿƒ ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

Total Differential

๋ฏธ์ ๋ถ„ํ•™์—์„œ ๋ฐฐ์› ๋˜ โ€œTotal Differentialโ€์ด ๊ธฐ์–ต์ด ๋‚˜๋Š”๊ฐ€? ๊ธฐ์–ต ์•ˆ ๋‚˜๋„ ๊ดœ์ฐฎ๋‹ค ์•„์ฃผ ์ง๊ด€์ ์ด๋‹ˆ๊นŒ! Total Differential์€ 2์ฐจ์› ์Œํ•จ์ˆ˜ $f(x, y) = c$์— ๋Œ€ํ•ด ์•„๋ž˜์™€ ๊ฐ™์ด ์ •์˜ํ•œ ํŽธ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹์ด๋‹ค.

\[df = f_x \, dx + f_y \, dy = 0\]

Total Differential์€ 2์ฐจ์› ํ•จ์ˆ˜๊ฐ€ $x$์™€ $y$ ์ถ•์— ๋Œ€ํ•œ ๋ฐฉํ–ฅ ํŽธ๋ฏธ๋ถ„๊ณผ ๋ชจ๋“  ๋ฐฉํ–ฅ์—์„œ์˜ ๋ฏธ๋ถ„์ด ๊ฐ€๋Šฅํ•œ์ง€๋ฅผ ๊ฐ€๋Š ํ•˜๋Š” ๊ธฐ์ค€์ด๋‹ค.


์˜ˆ๋ฅผ ๋“ค์–ด, $f(x, y) = x + x^2 y = c$๋ผ๋Š” ์Œํ•จ์ˆ˜๋ฅผ ์ƒ๊ฐํ•ด๋ณด์ž. ์š”๊ฒƒ์˜ Total Differential์„ ๊ตฌํ•ด๋ณด๋ฉด

\[df = (1 + 2xy) \, dx + x^2 \, dy = 0\]

์ด ๋œ๋‹ค. Differential์˜ ๊ผด๋กœ ๋ณด๋ฉด ์ต์ˆ™ํ•˜์ง€ ์•Š์„ ์ˆ˜๋„ ์žˆ๋Š”๋ฐ, ์š”๊ฑธ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์˜ ๊ผด๋กœ ํ‘œํ˜„ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[2xy + x^2 \frac{dy}{dx} = 0\]

๋ฏธ๋ถ„ํ…€ $yโ€™$์ด ์ƒ๊ฒผ๋‹ค!! ์ฆ‰, ์–ด๋–ค ์Œํ•จ์ˆ˜์˜ Total Differential์€ ODE๋ฅผ ์œ ๋„ํ•œ๋‹ค.

Exact ODE

์ž! ์—ฌ๊ธฐ์—์„œ ์ง€๊ธˆ๊นŒ์ง€ ์ด์–ด์˜จ ํ๋ฆ„์„ โ€œ๋ฐ˜๋Œ€๋กœโ€ ์ƒ๊ฐ ํ•ด๋ณด์ž. ๋งŒ์•ฝ ์ฃผ์–ด์ง„ ODE๊ฐ€ ์–ด๋–ค ์Œํ•จ์ˆ˜ $f(x, y)$์˜ Total Differential์ด๋ž€ ๊ฑธ ์•ˆ๋‹ค๋ฉด, ์›๋ณธ ์Œํ•จ์ˆ˜๋ฅผ ์‰ฝ๊ฒŒ ์ฐพ์„ ์ˆ˜ ์žˆ์„๊นŒ?? ๐Ÿง ์ •๋‹ต์€ Yes!

์•„๋ž˜์™€ ๊ฐ™์€ ํ˜•ํƒœ์˜ ODE๋ฅผ ์ƒ๊ฐํ•ด๋ณด์ž.

\[M(x, y) \, dx + N(x, y) \, dy = 0\]

๋‹จ, ์œ„์™€ ๊ฐ™์€ ํ˜•ํƒœ๋ผ๊ณ  ๋ชจ๋‘ Total Differential๊ฐ€ ๋˜๋Š” ๊ฑด ์•„๋‹ˆ๋‹ค! Total Differential๊ฐ€ ๋˜๋ ค๋ฉด $M_y = N_x$ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•ด์•ผ ํ•œ๋‹ค. ์ด์œ ๋Š” Total Differential์ธ ๊ฒฝ์šฐ, $f_{xy} = f_{yx}$๊ฐ€ ์„ฑ๋ฆฝํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

๋งŒ์•ฝ ์ฃผ์–ด์ง„ ODE๊ฐ€ Total Differential์ด๋ผ๋Š” ๊ฒƒ์„ ์•ˆ๋‹ค๋ฉด, ์›๋ณธ ํ•จ์ˆ˜๋ฅผ ์—ญ์œผ๋กœ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋จผ์ € $f_x = M(x, y)$์ž„์„ ํ™œ์šฉํ•ด ์›๋ณธ ํ•จ์ˆ˜๋ฅผ ์œ ๋„ํ•œ๋‹ค.

\[f(x, y) = \int M(x, y) \, dx + g(y)\]

๊ทธ๋ฆฌ๊ณ  ์œ„์˜ ์‹์„ $y$์— ๋Œ€ํ•ด์„œ ํŽธ๋ฏธ๋ถ„ ํ•˜์—ฌ $g(y)$๋ฅผ ์ฐพ๋Š”๋‹ค.

\[\frac{\partial}{\partial y} \left(\int M(x, y) \, dx + g(y)\right) = N(x, y)\]

์ ๋ถ„๊ณผ ๋ฏธ๋ถ„์ด ์„ž์—ฌ์„œ ์‹์€ ์ข€ ๋ณต์žกํ•ด๋ณด์ด์ง€๋งŒ, ์‹ค์ œ ์‹์œผ๋กœ ์ ‘ํ•ด๋ณด๋ฉด ๊ดœ์ฐฎ์„ ๊ฒƒ์ด๋‹ค ใ…Žใ…Ž ์‹œ์ž‘ํ•  ๋•Œ ๋ดค๋˜ ์Œํ•จ์ˆ˜ $f(x, y)$์˜ โ€œTotal Differentialโ€๋กœ ์š”๊ฑธ ๊ตฌํ•ด๋ณด๋ฉด,

\[M(x, y) = 1 + 2xy \rightarrow f(x, y) = x + x^2y + g(y)\]

๊ทธ๋ฆฌ๊ณ  $y$์— ๋Œ€ํ•ด ํŽธ๋ฏธ๋ถ„ ํ•˜๋ฉด,

\[x^2 + g'(y) = x^2\]

๋”ฐ๋ผ์„œ, $gโ€™(y) = 0$์ด๊ณ , $g(y) = C$์ด๋‹ค. ๋”ฐ๋ผ์„œ, ์›๋ณธ ํ•จ์ˆ˜ $f(x, y)$๋Š”

\[f(x, y) = x + x^2 y = C\]

์š”๋Ÿฐ $M(x, y) \, dx + N(x, y) \, dy = 0$์˜ ๊ผด์˜ ODE๋ฅผ โ€œExact ODEโ€œ๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค.

Integrating Factor

์„ธ์ƒ์— โ€œExact ODEโ€๋งŒ ์žˆ์ง„ ์•Š๋Š” ๋ฒ•. ํŽธ๋ฏธ๋ถ„ ํ…Œ์ŠคํŠธ๋ฅผ ํ–ˆ๋Š”๋ฐ, $M_y \ne N_x$์ธ ๊ฒฝ์šฐ๋„ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์•„๋ž˜์˜ ODE๋Š” Exact๊ฐ€ ์•„๋‹ˆ๋‹ค.

\[-y \, dx + x \, dy = 0\]

๊ทธ๋Ÿฐ๋ฐ, ์š” ODE์˜ ์–‘๋ณ€์— $1/x^2$๋ฅผ ๊ณฑํ•ด์ฃผ๋ฉด, ๋†€๋ž๊ฒŒ๋„ Exact ODE๊ฐ€ ๋œ๋‹ค!!

\[- \frac{y}{x^2} \, dx + \frac{1}{x} \, dy = 0\]

์ด๋ ‡๋“ฏ $M(x, y) \, dx + N(x, y) \, dy = 0$ ๊ผด์˜ ODE๋Š” ์–ด๋–ค ํ•จ์ˆ˜ $F(x, y)$๋ฅผ ๊ณฑํ•ด์„œ ๋‹ค์‹œ โ€œExact ODEโ€๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค. ์ด ํ•จ์ˆ˜ $F$๋ฅผ โ€œIntegrating Factorโ€œ๋ผ๊ณ  ํ•œ๋‹ค.

๋‹จ, Int. Factor $F(x, y)$๋Š” ์œ ์ผํ•˜๊ฒŒ ์กด์žฌํ•˜์ง„ ์•Š๋Š”๋‹ค. ์œ„์˜ non-exact ODE์— $1/y^2$๋ฅผ ๊ณฑํ–ˆ์–ด๋„ Exact ODE๊ฐ€ ๋œ๋‹ค.

\[- \frac{1}{y} \, dx + \frac{x}{y^2} \, dy = 0\]


How to Find Integrating Factor?

์ผ๋‹จ ์–ด๋–ค Int. Factor $F$๋ฅผ ์ฐพ์•˜๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ , ์š”๊ฑธ non-exact ODE์— ์ ์šฉํ•ด๋ณด์ž.

\[FM \, dx + FN \, dy = 0\]

Exact ODE๊ฐ€ ๋˜์—ˆ์œผ๋‹ˆ, ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์•„๋ž˜์˜ Exact Test์— ๋Œ€ํ•œ ์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

\[F_y M + F M_y = F_x N + F N_x\]

์•ž์—์„œ ๋งํ•˜๊ธธ Int. Factor๋Š” ์œ ์ผํ•˜๊ฒŒ ๊ฒฐ์ •๋˜์ง€ ์•Š๋Š”๋‹ค. ๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๊ฐ€ ์›ํ•˜๋Š”๋Œ€๋กœ Int. Factor๋ฅผ ์žก์„ ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ด๋ฒˆ์—๋Š” Int. Factor๊ฐ€ ์˜ค์ง $x$์—๋งŒ ์˜์กดํ•˜๋Š” ํ•จ์ˆ˜๋ผ๊ณ  ๊ฐ€์ •ํ•ด๋ณด์ž: โ€œLet $F(x, y) = F(x)$โ€.

๊ทธ๋Ÿฌ๋ฉด, $F_y = 0$์ด ๋˜๋ฏ€๋กœ, ์œ„์˜ Exact Test์— ๋Œ€ํ•œ ์‹์„ ์•„๋ž˜์™€ ๊ฐ™์ด ์“ธ ์ˆ˜ ์žˆ๋‹ค.

\[F M_y = F_x N + F N_x\]

์ด๊ฑธ $F$์™€ $F_x$์— ๋Œ€ํ•œ ์‹์œผ๋กœ ์ •๋ฆฌํ•˜๋ฉดโ€ฆ

\[\begin{aligned} F_x N &= F (M_y - N_x) \\ \frac{F_x}{F} &= \frac{1}{N} (M_y - N_x) \\ \ln F &= \int \left( \frac{1}{N} (M_y - N_x) \right) \, dx \\ F &= \exp \left[ \int \left( \frac{1}{N} (M_y - N_x) \right) dx \right] \end{aligned}\]

์•”ํŠผ ์š” $F(x, y)$๋ฅผ non-exact ODE์— ๊ณฑํ•ด์ฃผ๋ฉด, exact ODE๊ฐ€ ๋˜๊ณ , ๊ทธ๋Ÿฐ ODE๋Š” ์‰ฝ๊ฒŒ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค ใ…Žใ…Ž

๋งบ์Œ๋ง

์ด์–ด์ง€๋Š” ํฌ์ŠคํŠธ์—์„œ๋Š” โ€œHomogeneous ODEโ€์— ๋Œ€ํ•ด์„œ ๋‹ค๋ฃฌ๋‹ค. ์š”๊ฒƒ๋„ Exactness์ฒ˜๋Ÿผ Homogeneous์™€ non-homogeneous๊ฐ€ ์žˆ๋Š”๋ฐ, Integrating Factor๋ฅผ ์‚ฌ์šฉํ•ด non-homo.๋ฅผ homo. ODE๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ๋ฌธ์ œ๋ฅผ ํ’€ ์ˆ˜ ์žˆ๋‹ค.

non-homogeneous ODE์˜ ๊ผด์€ ์•„๋ž˜์™€ ๊ฐ™์€๋ฐ

\[y' + p(x) y = r(x)\]

Total Differential์˜ ๊ผด๋กœ ๋ฐ”๊ฟ”์„œ ๋ณด๋ฉดโ€ฆ

\[\left( p(x) y - r(x) \right) \, dx + 1 \, dy = 0\]

์š”๋ ‡๊ฒŒ ์ƒ๊ฒผ๋Š”๋ฐ $f_y = N(x, y) = 1$์ด๊ธฐ ๋•Œ๋ฌธ์—, Int. Factor $F(x, y)$๋ฅผ ๊ตฌํ•˜๋Š” ์‹์ด ๋” ๊ฐ„๋‹จํ•ด์ง„๋‹ค. ๊ทธ๋ž˜์„œ ๋ฌธ์ œ๋ฅผ ํ’€๊ฒŒ ๋œ๋‹ค๋ฉด, Exact ODE์—์„œ์˜ Int. Factor์˜ ๊ณต์‹์„ ์™ธ์šฐ๋Š” ๊ฒƒ ๋ณด๋‹ค Homo. ODE์—์„œ์˜ Int. Factor์˜ ๊ณต์‹์„ ์™ธ์šฐ๋Š”๊ฒŒ ๋” ๊ฐ„๋‹จํ•˜๋‹ค.

๐Ÿ‘‰ Homogeneous Linear ODE