Homogeneous Linear ODE๋ฅผ Exact ODE๋กœ ํ•ด์„ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ดโ€ฆ ๐Ÿ”ฆ

7 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค๋งŒโ€ฆ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์€ ์กธ์—…์‹œํ—˜ ๋Œ€์ƒ ๊ณผ๋ชฉ์ด ์•„๋‹ˆ๋ผ๋Š” ๊ฑธ ๋‚˜์ค‘์— ์•Œ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹คโ€ฆ OTLโ€ฆ ๊ทธ๋ž˜๋„ ์ด์™• ์‹œ์ž‘ํ•œ ๊ฑฐ ๋‹ค์‹œ ๋ณต์Šต ์ข€ ํ•ด๋ด…์‹œ๋‹ค! ๐Ÿƒ ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

Linear ODE

\[y' + p(x) y = r(x)\]

ODE์—์„œ $y$์˜ ์ตœ๋Œ€ ์ฐจ์ˆ˜๊ฐ€ 1์ธ ODE๋ฅผ Linear ODE๋ผ๊ณ  ํ•œ๋‹ค.

์ด๋–„, $r(x)$ ํ…€์ด 0์ด๋ผ๋ฉด, โ€œHomogeneous Linear ODEโ€๋ผ๊ณ  ํ•˜๊ณ , ์ด ๊ฒฝ์šฐ๋Š” ์•„์ฃผ ์‰ฝ๊ฒŒ ODE๋ฅผ ํ’€ ์ˆ˜ ์žˆ๋‹ค.

Homogeneous Linear ODE

\[y' + p(x) y = 0\]

2๊ฐ€์ง€ ๋ฐฉ์‹์œผ๋กœ ํ’€ ์ˆ˜ ์žˆ๋‹ค.

Separable Equation

์‹์„ ์•„๋ž˜์™€ ๊ฐ™์ด ์ •๋ฆฌํ•œ๋‹ค.

\[\frac{y'}{y} = - p(x)\]

๊ทธ๋ฆฌ๊ณ  ์ ๋ถ„ํ•˜๋ฉดโ€ฆ

\[\ln y = - \int p(x) dx + C\]

๋‹ค์‹œ ์ •๋ฆฌํ•˜๋ฉด

\[y = C \cdot \exp \left( - \int p(x) \, dx \right)\]

Integrating Factor

Homogeneous Linear ODE๋„ โ€œTotal Differentialโ€์˜ ๊ผด๋กœ ๋ณผ ์ˆ˜ ์žˆ์œผ๋‚˜

\[\left[ p(x) y \right] \cdot dx + 1 \cdot dy = 0\]

Exactness Test๋ฅผ ํ•ด๋ณด๋ฉด, $M_y = N_x$๋ฅผ ๋งŒ์กฑํ•˜์ง€ ์•Š๋Š”๋‹ค.

\[M_y = p(x) \ne 0 = N_x\]

๊ทธ๋ž˜์„œ Integrating Factor $F(x, y)$๋ฅผ ์ฐพ์•„ ์ ์šฉํ•ด์•ผ ํ•˜๋Š”๋ฐ, Homogeneous Linear ODE์˜ Int. Factor๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ๊ณต์‹์œผ๋กœ ์กด์žฌํ•œ๋‹ค.

[Homogeneous Linear ODE์˜ Integrating Factor]

\[F(x) = \exp \left( \int p(x) \, dx \right)\]

๋ˆˆ์—ฌ๊ฒจ ๋ณผ ์ ์€ ๋ณธ๋ž˜ Integrating Factor๋Š” $F(x)$๋„ ๊ฐ€๋Šฅํ•˜๊ณ , $F(y)$๋„ ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ทธ๋Ÿฐ๋ฐ, Homogeneous Linear ODE์—์„œ๋Š” ์˜ค์ง $F(x)$๋งŒ ์ƒ๊ฐํ•˜๋ฉด ๋œ๋‹ค.

์‚ฌ์‹ค Integrating Factor์˜ ๊ณต์‹์— ๋งž์ถฐ ์œ ๋„ํ•ด๋„ ๋˜์ง€๋งŒโ€ฆ ๋Œ€์ถฉ ํ˜•ํƒœ๋งŒ ๊ธฐ์–ตํ•ด๋‘๋ฉด ๋‚˜์ค‘์— non-homogeneous Linear ODE๋ฅผ ํ’€ ๋•Œ๋„ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•˜๋ฉด ๋œ๋‹ค ใ…Žใ…Ž ๐Ÿ™‚


์•”ํŠผ ์ด๋ ‡๊ฒŒ ํ•˜๊ณ  non-exact ODE๋ฅผ exact ODE๋กœ ๋ณ€ํ™˜ํ•ด ํ’€์–ด๋ณด์ž.

\[\left(F(x) \cdot p(x) y \right) \cdot dx + F(x) \cdot dy = 0\]

์ด๋•Œ, Integrating Factor $F(x)$๊ฐ€ ์•„๋ž˜์˜ ์‹์„ ๋งŒ์กฑํ•œ๋‹ค. ์ด ๋ถ€๋ถ„, ์ค‘์š”ํ•˜๋‹ค.

\[F'(x) = p(x) \cdot \exp \left( \int p(x) \, dx \right) = p(x) F(x)\]

์ด๊ฑธ exact ODE๋กœ ๋ณ€ํ™˜๋œ ์‹์— ์ ์šฉํ•˜๋ฉด

\[F' y \cdot dx + F(x) dy = F'y + Fy' = (Fy)' = 0\]

์ฆ‰, Int. Factor $F(x)$๋ฅผ ์ ์šฉํ•˜๊ณ  ๋‚˜๋‹ˆ, Total Differential์— ๋Œ€ํ•œ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์ด ์•„์ฃผ ๊น”๋”ํ•˜๊ฒŒ ์ •๋ฆฌ ๋˜์—ˆ๋‹ค ใ…Žใ…Ž

\[(Fy)' = 0\]

์ด์ œ๋Š” ๊ธฐ๊ณ„์ ์œผ๋กœ ์ •๋ฆฌ๋งŒ ํ•˜๋ฉด ๋œ๋‹ค.

\[\begin{aligned} (Fy)' &= 0 \\ Fy &= C \\ y &= C / F \\ y &= C \cdot \exp \left( - \int p(x) \, dx \right) \end{aligned}\]


์ฒ˜์Œ์— ํ’€์—ˆ๋˜ Separable Equation ๋ฐฉ์‹๊ณผ ๋™์ผํ•œ ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ๋‹ค ใ…Žใ…Ž ํ’€์ด ์ž์ฒด๋Š” Separable Equation์„ ์“ฐ๋Š”๊ฒŒ ํ›จ์”ฌ ์‰ฝ๊ธฐ ๋•Œ๋ฌธ์—, Homogeneous Linear ODE๋ผ๋Š” ๊ฑธ ์•Œ์•˜๋‹ค๋ฉด, Separable Equation์œผ๋กœ ํ‘ธ๋Š”๊ฒŒ ์ œ์ผ ์‰ฝ๋‹ค! ๊ทธ๋Ÿฌ๋‚˜โ€ฆ

Non-homogeneous Linear ODE

๋ชจ๋“  Linear ODE๊ฐ€ $r(x) = 0$์ธ Homo. Linear ODE๋Š” ์•„๋‹ˆ๋‹ค.

\[y' + p(x) y = r(x)\]

์œ„์˜ ODE๋ฅผ Total Differential๋กœ ํ‘œํ˜„ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™์€๋ฐ, exact ODE๊ฐ€ ๋  ์ˆ˜ ์—†๋‹ค.

\[\left[ p(x)y - r(x) \right] \cdot dx + 1 \cdot dy = 0\]

์š”๊ธฐ๋„ $N_x = 0$์ด๊ธฐ ๋•Œ๋ฌธ์—, Exactness Test๋ฅผ ํ†ต๊ณผํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋”ฐ๋ผ์„œ, ์ด ๋ฌธ์ œ๋ฅผ ํ’€๊ธฐ ์œ„ํ•ด์„  Integrating Factor๋ฅผ ์ ์šฉํ•ด์•ผ ํ•œ๋‹ค.

Integrating Factor

Integrating Factor๋ฅผ ๊ตฌํ•ด๋ณด๋ฉด, non-homo. ODE์—์„œ๋„ homo. ODE์™€ ๊ฐ™์€ Integrating Factor๋ฅผ ๊ฐ–๋Š” ๊ฑธ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ๋‹ค.

[Linear ODE์˜ Integrating Factor]

\[F(x) = \exp \left( \int p(x) \, dx \right)\]

Homo.์ธ ๊ฒฝ์šฐ, non-homo.์ธ ๊ฒฝ์šฐ ์ƒ๊ด€ ์—†์Œ!!

์ด์ œ Int. Factor๋ฅผ non-homo. Linear ODE์— ์ ์šฉํ•ด์„œ exact ODE๋กœ ๋ฐ”๊ฟ”๋ณด์ž.

\[F (py - r) \cdot dx + F \cdot dy = 0\]

์ด๋–„, $Fโ€™ = p F$์ด๋ฏ€๋กœโ€ฆ

\[(F'y - Fr) \cdot dx + F \cdot dy = 0\]

๊ทธ๋ฆฌ๊ณ  ์‹์„ ์ •๋ฆฌํ•ด $Fy$์— ๋Œ€ํ•œ ODE๋กœ ๋ฐ”๊พธ๋ฉดโ€ฆ

\[Fy' + Fy' = Fr = (Fy)'\]

์œ„์˜ ODE๋ฅผ ํ’€๋ฉดโ€ฆ

\[\begin{aligned} (Fy)' &= Fr \\ Fy &= \int Fr \, dx + C \\ y &= F^{-1} \cdot \left( \int Fr \, dx + C \right) \end{aligned}\]


$y$๋ฅผ ์ฐพ์•˜์œผ๋‹ˆ ๊ธฐ์กด์˜ non-homo. linear ODE๋Š” ํ’€์—ˆ๋‹ค!! ์‹์„ ๊ฐ„์†Œํ™” ํ•˜๊ธฐ ์œ„ํ•ด $h = \int p(x) \, dx$๋กœ ๋‘๊ณ , ์‹์„ ๋‹ค์‹œ ์“ฐ๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[y = e^{-h} \left( \int r e^h dx + C \right)\]

๋งบ์Œ๋ง

๋ฏธ๋ถ„๋ฐฉ์ •์‹์˜ ์ฒซ๋ฒˆ์งธ ์ฑ•ํ„ฐ์ธ๋ฐ, ๋ฒŒ์จ ์ดํ•ด ์•ˆ ๋˜๋Š” ๋ถ€๋ถ„์ด ์žˆ์–ด์„œ ํฌ์ŠคํŠธ๋กœ ์ •๋ฆฌ ํ•ด๋ณด์•˜๋‹คโ€ฆ;; ๊ณต๋ถ€ํ•˜๋ฉด์„œ ๋ณด๊ณ  ์žˆ๋Š” ๊ฐ•์˜์—์„œ Integrating Factor๊ฐ€ ํ•„์š”ํ•œ์ง€ ์„ค๋ช…ํ•˜๋Š” ๋ถ€๋ถ„ ์—†์ด ๋ฐ”๋กœ

โ€œIntegrating Factor $F(x)$๋ฅผ ์ ์œผ๋ฉด ์š”๋ž˜์š”^^โ€

โ€œGeneral Linear ODE์˜ ์†”๋ฃจ์…˜์€ ์š”๋ž˜์š”^^ $r(x)$์ด ์—†์œผ๋ฉด homogeneous ODE์˜ ์†”๋ฃจ์…˜์ด๋ž‘ ๊ฐ™์•„์š”^^โ€

์š”๋ ‡๊ฒŒ ๊ฒฐ๊ณผ๋กœ ๋ฐ”๋กœ ๋„˜์–ด ๊ฐ”๋˜๊ฒŒ ์ข€ ๋ง‰๋ง‰ํ•˜๊ฒŒ ๋Š๊ปด์กŒ๋˜ ๊ฒƒ ๊ฐ™๋‹ค.

ํ•œ๋ฒˆ๋” ์ •๋ฆฌ

์ด ๋ถ€๋ถ„โ€ฆ ๋‹ค์‹œ ์ฝ์œผ๋‹ˆ ์ดํ•ด๊ฐ€ ์•ˆ ๋˜์–ด์„œ ๋‹ค์‹œ ํ•œ๋ฒˆ๋” ์š”์•ฝ ํ•ด๋ณธ๋‹ค.

์ผ๋‹จ homogeneous๋“  non-homogeneous๋“  Integrating Factor $F(x)$๋Š” ์•„๋ž˜์˜ ์‹์ด๋‹ค.

\[F(x) = \exp \left(\int p(x) \, dx \right)\]

homogeneous์™€ non-homogeneous์˜ ์ฐจ์ด๋Š” Int. Factor๋ฅผ ๋„์ž…ํ•œ ํ›„์— ํ‘ธ๋Š” ODE์˜ ํผ๊ณผ ๊ด€๋ จ ์žˆ๋‹ค.

[homogeneous linear ODE์ธ ๊ฒฝ์šฐ]

\[(Fy)' = 0\]

[non-homogeneous linear ODE์ธ ๊ฒฝ์šฐ]

\[(Fy)' = Fr\]

์š”๊ธฐ์„œ๋ถ€ํ„ฐ๋Š” ๊ทธ๋ƒฅ ์ ๋ถ„ํ•˜๊ณ  ์‹์„ ์ •๋ฆฌ๋งŒ ํ•˜๋ฉด ๋œ๋‹ค. ๋ณธ์ธ์€ $y$์— ๋Œ€ํ•œ ์ „์ฒด ํผ์„ ์ตํžˆ๋Š” ๊ฒƒ๋ณด๋‹ค ์š”๊ฒŒ ๋” ํŽธํ•œ ๋“ฏ!!