μΉ˜ν™˜μ„ 톡해 ν•΄κ²°ν•  수 μžˆλŠ” λŒ€ν‘œμ μΈ non-linear ODE νŒ¨ν„΄

2 minute read

λ³΅μˆ˜μ „κ³΅ν•˜κ³  μžˆλŠ” μˆ˜ν•™κ³Όμ˜ μ‘Έμ—…μ‹œν—˜μ„ μœ„ν•΄ ν•™λΆ€ μˆ˜ν•™ κ³Όλͺ©λ“€μ„ λ‹€μ‹œ κ³΅λΆ€ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€λ§Œβ€¦ 미뢄방정식은 μ‘Έμ—…μ‹œν—˜ λŒ€μƒ κ³Όλͺ©μ΄ μ•„λ‹ˆλΌλŠ” κ±Έ λ‚˜μ€‘μ— μ•Œκ²Œ λ˜μ—ˆμŠ΅λ‹ˆλ‹€β€¦ OTL… κ·Έλž˜λ„ 이왕 μ‹œμž‘ν•œ κ±° λ‹€μ‹œ 볡슡 μ’€ ν•΄λ΄…μ‹œλ‹€! πŸƒ 미뢄방정식 포슀트 전체 보기

λ“€μ–΄κ°€λ©°

λ² λ₯΄λˆ„이 방정식은 μ•„λž˜μ™€ 같은 ν˜•νƒœμ˜ non-linear ODE이닀.

\[y' + p(x) y = g(x) y^a\]

$a$ is any real number.

If $a=0$ or $a = 1$, then above equation becomes linear. We will handle the non-linear case.

미뢄방정식이 μœ„μ™€ 같은 ν˜•νƒœμ˜ non-linear ODE라면, λ² λ₯΄λˆ„이가 κ°œλ°œν•œ μ•„λž˜μ˜ μΉ˜ν™˜λ²•μ„ μ΄μš©ν•΄ linear ODE둜 λ³€ν™˜ν•˜κ³  ODEλ₯Ό ν’€μ–΄λ‚Ό 수 μžˆλ‹€!!

Bernoulli Equation’s Substitution

Let $u(x) = [y(x)]^{1 - a}$, then apply it to give ODE,

first, differentiate it.

\[u'(x) = y' \cdot (1-a) \cdot y^{-a}\]

then, we know $y’ = g(x) y^a - p(x) y$, so

\[u' = (1-a) y^{-a} \cdot (g(x) y^a - p(x) y)\]

clean up right side

\[u' = (1 - a) g(x) - (1-a)p(x) y^{1-a}\]

in the begging, we set $u(x) = y^{1-a}$, so

\[u'(x) = (1-a) g(x) - (1-a) p(x) u(x)\]

Then, the above equation is linear ODE of $u(x)$

\[u' + (1-a)p(x) u = (1-a)g(x)\]

맺음말

λ² λ₯΄λˆ„이 방정식 μžμ²΄λŠ” non-linear ODEλ₯Ό linear ODE둜 λ³€ν™˜ν•˜λŠ” μΉ˜ν™˜ ν…Œν¬λ‹‰μ΄λ‹€. λ­”κ°€ 이것 자체둜 더 μ˜λ―ΈμžˆλŠ” ν•΄μ„μ΄λ‚˜ ν™œμš©μ„ 찾을 순 없을 것 κ°™λ‹€.

λ² λ₯΄λˆ„μ΄μ˜ μΉ˜ν™˜ ν…Œν¬λ‹‰μ„ ν™œμš©ν•  수 μžˆλŠ” λŒ€ν‘œμ μΈ 사둀가 β€œLogistic Population Model”에 λŒ€ν•œ 식이닀.

[Logistic Population Model]

\[y' = ky(M-y)\]

μš” λ…€μ„μ˜ 경우, ODE μ‹μ—μ„œ $y$의 μ΅œκ³ μ°¨ν•­μ΄ $a=2$이기 λ•Œλ¬Έμ—, $u = y^{-1}$둜 λ°”κΎΈλŠ” μΉ˜ν™˜ ν…Œν¬λ‹‰μœΌλ‘œ linear ODE둜 λ³€ν™˜ν•  수 μžˆλ‹€.

Logistic Population Model에 λŒ€ν•œ μžμ„Έν•œ λ‚΄μš©μ€ μ•„λž˜μ— ν¬μŠ€νŠΈμ— μžμ„Ένžˆ κΈ°μˆ ν•΄λ‘μ—ˆλ‹€ πŸ™‚

πŸ‘‰ Logistic Population Model