Bernoulli Differential Equations
볡μμ 곡νκ³ μλ μνκ³Όμ μ‘Έμ μνμ μν΄ νλΆ μν κ³Όλͺ©λ€μ λ€μ 곡λΆνκ³ μμ΅λλ€λ§β¦ λ―ΈλΆλ°©μ μμ μ‘Έμ μν λμ κ³Όλͺ©μ΄ μλλΌλ κ±Έ λμ€μ μκ² λμμ΅λλ€β¦ OTLβ¦ κ·Έλλ μ΄μ μμν κ±° λ€μ λ³΅μ΅ μ’ ν΄λ΄ μλ€! π λ―ΈλΆλ°©μ μ ν¬μ€νΈ μ 체 보기
λ€μ΄κ°λ©°
λ² λ₯΄λμ΄ λ°©μ μμ μλμ κ°μ ννμ non-linear ODEμ΄λ€.
$a$ is any real number.
If $a=0$ or $a = 1$, then above equation becomes linear. We will handle the non-linear case.
λ―ΈλΆλ°©μ μμ΄ μμ κ°μ ννμ non-linear ODEλΌλ©΄, λ² λ₯΄λμ΄κ° κ°λ°ν μλμ μΉνλ²μ μ΄μ©ν΄ linear ODEλ‘ λ³ννκ³ ODEλ₯Ό νμ΄λΌ μ μλ€!!
Bernoulli Equationβs Substitution
Let $u(x) = [y(x)]^{1 - a}$, then apply it to give ODE,
first, differentiate it.
\[u'(x) = y' \cdot (1-a) \cdot y^{-a}\]then, we know $yβ = g(x) y^a - p(x) y$, so
\[u' = (1-a) y^{-a} \cdot (g(x) y^a - p(x) y)\]clean up right side
\[u' = (1 - a) g(x) - (1-a)p(x) y^{1-a}\]in the begging, we set $u(x) = y^{1-a}$, so
\[u'(x) = (1-a) g(x) - (1-a) p(x) u(x)\]Then, the above equation is linear ODE of $u(x)$
\[u' + (1-a)p(x) u = (1-a)g(x)\]λ§Ίμλ§
λ² λ₯΄λμ΄ λ°©μ μ μ체λ non-linear ODEλ₯Ό linear ODEλ‘ λ³ννλ μΉν ν ν¬λμ΄λ€. λκ° μ΄κ² μμ²΄λ‘ λ μλ―Έμλ ν΄μμ΄λ νμ©μ μ°Ύμ μ μμ κ² κ°λ€.
λ² λ₯΄λμ΄μ μΉν ν ν¬λμ νμ©ν μ μλ λνμ μΈ μ¬λ‘κ° βLogistic Population Modelβμ λν μμ΄λ€.
[Logistic Population Model]
\[y' = ky(M-y)\]μ λ μμ κ²½μ°, ODE μμμ $y$μ μ΅κ³ μ°¨νμ΄ $a=2$μ΄κΈ° λλ¬Έμ, $u = y^{-1}$λ‘ λ°κΎΈλ μΉν ν ν¬λμΌλ‘ linear ODEλ‘ λ³νν μ μλ€.
Logistic Population Modelμ λν μμΈν λ΄μ©μ μλμ ν¬μ€νΈμ μμΈν κΈ°μ ν΄λμλ€ π