2์ฐจ ๋ฐฉ์ •์‹์„ ํ’€์–ด์„œ 2nd order ODE์˜ ํ•ด๋ฅผ ๊ตฌํ•˜๋Š” ๋ฐฉ๋ฒ•. Reduction of Method๋กœ 2nd order ODE๋ฅผ 1st order ODE๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด.

9 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค๋งŒโ€ฆ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์€ ์กธ์—…์‹œํ—˜ ๋Œ€์ƒ ๊ณผ๋ชฉ์ด ์•„๋‹ˆ๋ผ๋Š” ๊ฑธ ๋‚˜์ค‘์— ์•Œ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹คโ€ฆ OTLโ€ฆ ๊ทธ๋ž˜๋„ ์ด์™• ์‹œ์ž‘ํ•œ ๊ฑฐ ๋‹ค์‹œ ๋ณต์Šต ์ข€ ํ•ด๋ด…์‹œ๋‹ค! ๐Ÿƒ ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

๋“ค์–ด๊ฐ€๋ฉฐ

์•„๋ž˜์™€ ๊ฐ™์ด ์ƒ๊ธด 2nd order homogeneous linear ODE์˜ ํ•ด๋ฅผ ๊ตฌํ•˜๋Š” ์ผ๋ฐ˜์ ์ธ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๋‹ค๋ฃฌ๋‹ค.

\[y'' + p(x) y' + q(x) y = 0\]

with constant coefficients

์ฒ˜์Œ์—” ๊ณ„์ˆ˜ $p(x) = a$, $q(x) = b$๋กœ ์ƒ์ˆ˜์ธ ๊ฒฝ์šฐ๋ฅผ ๋จผ์ € ์‚ดํŽด๋ณด์ž.

\[y'' + a y' + b y = 0\]

๊ณ„์ˆ˜๊ฐ€ ์ƒ์ˆ˜์ผ ๋•Œ๋Š” ODE์˜ ํ•ด๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์•„์ฃผ ์‰ฝ๋‹ค!

$y = e^{\lambda x}$๋ฅผ ๋Œ€์ž…ํ•ด์„œ ๋‚˜์˜ค๋Š” $\lambda$์— ๋Œ€ํ•œ 2์ฐจ์‹์„ ํ’€์–ด์„œ

\[\lambda^2 + a \lambda + b = 0\]

๊ทธ๊ฒƒ์ด (1) ๋‘ ์‹ค๊ทผ์ธ์ง€, (2) ์ค‘๊ทผ์ธ์ง€, (3) ๋‘ ํ—ˆ๊ทผ์ธ์ง€์— ๋”ฐ๋ผ ODE์˜ ํ•ด๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค.

๋‘ ์‹ค๊ทผ

์•„์ฃผ ์‰ฌ์šด ์ผ€์ด์Šค๋กœ ๊ทธ๋ƒฅ

  • $y_1(x) = e^{\lambda_1 x}$
  • $y_2(x) = e^{\lambda_2 x}$

๋กœ ๊ฒฐ์ •๋œ๋‹ค.

์ค‘๊ทผ

์ด ๊ฒฝ์šฐ๊ฐ€ ์กฐ๊ธˆ ๋ณต์žกํ•œ๋ฐ, ์ผ๋‹จ ์ค‘๊ทผ $\lambda = - a / 2$๋ฅผ ํ•ด๋กœ ๊ฐ–๋Š” solution $y_1(x) = e^{- a x / 2}$๋ฅผ ๊ตฌํ•œ๋‹ค.

๊ทธ๋ฆฌ๊ณ  ์š” $y_1(x)$์— $x$๋ฅผ ๊ณฑํ•ด์„œ $y_2(x)$๋ฅผ ๊ตฌํ•˜๋ฉด, ๊ทธ๊ฒŒ 2๋ฒˆ์งธ basis๊ฐ€ ๋œ๋‹ค.

\[y_2(x) = x \cdot y_1(x) = x e^{- a x/ 2}\]

์‹ค์ œ๋กœ ๊ทธ๋Ÿฐ์ง€ ์ฒดํฌ ํ•ด๋ณด๋ฉดโ€ฆ

\[\begin{aligned} y_2' &= 1 \cdot e^{\lambda x} + x \cdot \lambda \cdot e^{\lambda x} \\ &= \left(1 + \lambda x \right) \cdot e^{\lambda x} \\ \end{aligned}\] \[\begin{aligned} y_2'' &= \lambda \cdot e^{\lambda x} + (1 + \lambda x) \lambda \cdot e^{\lambda x} \\ &= \left( \lambda^2 x + 2 \lambda \right) \cdot e^{\lambda x} \end{aligned}\]

๊ณ„์ˆ˜ $a$, $b$๋ฅผ $\lambda$ ๊ธฐ์ค€์œผ๋กœ ๋‹ค์‹œ ์ž‘์„ฑํ•˜๊ณ  ์‹์— ๋Œ€์ž…ํ•ด๋ณด๋ฉดโ€ฆ

  • $a = - 2 \lambda$
  • $b = a^2 / 4 = \lambda^2$
\[\begin{aligned} \left( \lambda^2 x + 2 \lambda \right) \cdot \cancel{e^{\lambda x}} - 2 \lambda \cdot \left(1 + \lambda x \right) \cdot \cancel{e^{\lambda x}} + \lambda^2 \cdot x \cdot \cancel{e^{\lambda x}} &= 0 \\ \left( \lambda^2 x + 2 \lambda \right) - 2 \lambda \cdot \left(1 + \lambda x \right) + \lambda^2 x &= 0 \\ \cancelto{0}{\left( \lambda^2 - 2 \lambda^2 + \lambda^2 \right)} \cdot x + \cancelto{0}{\left( 2 \lambda - 2 \lambda \right)} &= 0 \end{aligned}\]

๋”ฐ๋ผ์„œ, ์‹์ด ์„ฑ๋ฆฝํ•˜๋ฏ€๋กœ $x e^{\lambda x}$๋Š” ODE์˜ basis์ด๋‹ค. $\blacksquare$

์ฒซ๋ฒˆ์งธ basis $y_1$์— $x$๋ฅผ ๊ณฑํ•˜๋ฉด ๋‘๋ฒˆ์งธ basis $y_2 = x \cdot y_1$๋ฅผ ๊ตฌํ•˜๋Š” ๊ณผ์ •์ด ๋ญ”๊ฐ€ โ€œ๋ฟ…!โ€ํ•˜๊ณ  ํŠ€์–ด๋‚˜์˜จ ๊ฒƒ ๊ฐ™์ง€๋งŒ ๊ทธ๋ ‡์ง€ ์•Š๋‹ค. โ€œReduction of Orderโ€๋ผ๋Š” ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•ด์„œ ๊ตฌํ•œ ๊ฒƒ์ด๊ณ , ๊ตฌ์ฒด์ ์ธ ๋ฐฉ๋ฒ•์€ $yโ€™โ€™ + p(x) yโ€™ + q(x) y = 0$ ODE๋ฅผ ํ‘ธ๋Š” ๋ฐฉ๋ฒ•์„ ๋‹ค๋ฃฐ ๋•Œ ์ž์„ธํžˆ ๋ณผ ๊ฒƒ์ด๋‹ค.

๋‘ ํ—ˆ๊ทผ

$\lambda$์— ๋Œ€ํ•œ 2์ฐจ ๋ฐฉ์ •์‹์„ ํ’€์—ˆ์„ ๋•Œ, ์•„๋ž˜์™€ ๊ฐ™์ด ํ—ˆ๊ทผ์ด ๋‚˜์˜ฌ ์ˆ˜ ์žˆ๋‹ค.

\[\lambda = - \frac{a}{2} \pm \frac{\sqrt{a^2 - 4b}}{2} i\]

$e^{\lambda x}$๋Š” ์˜ค์ผ๋Ÿฌ ๊ณต์‹์„ ์‚ฌ์šฉํ•ด ์•„๋ž˜์™€ ๊ฐ™์ด ์“ธ ์ˆ˜ ์žˆ๋‹ค.

\[\begin{aligned} y &= e^{\lambda x} = e^{\left( - \frac{a}{2} \pm \frac{\sqrt{a^2 - 4b}}{2} i \right) x} \\ &= e^{- ax / 2} \cdot e^{\pm \frac{\sqrt{a^2 - 4b}}{2} i \cdot x} \\ &= e^{- ax / 2} \cdot \left( \cos \omega x \pm i \sin \omega x \right) \end{aligned}\]

์ด๋•Œ, $\omega = \sqrt{a^2 - 4b} / 2$์ด๋‹ค.

์œ„์™€ ๊ฐ™์ด ํ—ˆ๊ทผ $i$๊ฐ€ ํ‘œํ•จ๋œ ํ˜•ํƒœ ๊ทธ๋Œ€๋กœ ODE์˜ ํ•ด๋ผ๊ณ  ์–˜๊ธฐํ•ด๋„ ๋˜์ง€๋งŒ, ์•„๋ž˜์™€ ๊ฐ™์ด ์‹ค์ˆ˜ ๋ถ€๋ถ„๋งŒ ๋‚จ๊ฒจ์„œ ํ‘œํ˜„ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค.

\[\begin{aligned} y_1 &= \frac{1}{2} \cdot (e^{\lambda_1 x} + e^{\lambda_2 x}) = e^{- ax / 2} \cdot \cos \omega x \\ y_2 &= \frac{1}{2i} \cdot (e^{\lambda_1 x} - e^{\lambda_2 x}) = e^{- ax / 2} \cdot \sin \omega x \end{aligned}\]

์ •๋ฆฌํ•˜๋ฉด ํ—ˆ๊ทผ์ผ ๋•Œ๋Š” ํ•ด๊ฐ€ ์ฃผ๊ธฐ $\omega$๋ฅผ ๊ฐ–๋Š” $\cos$, $\sin$์˜ ์ฃผ๊ธฐ ํ•จ์ˆ˜์˜ ์ผ์ฐจ ๊ฒฐํ•ฉ์˜ ๊ผด์ด ๋œ๋‹ค.

\[y(t) = e^{- ax / 2} \cdot \left( C_1 \cos \omega x + C_2 \sin \omega x \right)\]

General Case: Reduction of Order Method

์œ„์—์„œ๋Š” ์ƒ์ˆ˜ ๊ณ„์ˆ˜์ธ 2nd order ODE๋ฅผ ์‚ดํŽด๋ดค๊ณ , ์š”๊ฑธ ๋‹ค์‹œ ์ผ๋ฐ˜์ ์ธ ํ˜•ํƒœ์˜ $p(x)$, $q(x)$๋ฅผ ๊ฐ€์ง„ ODE์—์„  ์–ด๋–ป๊ฒŒ ์ ‘๊ทผํ•ด์•ผ ํ•˜๋Š”์ง€ ์‚ดํŽด๋ณด์ž.

\[y'' + p(x) y' + q(x) y = 0\]

๊ฒฐ๋ก ๋ถ€ํ„ฐ ๋งํ•˜๋ฉด โ€œReduction of Orderโ€๋ž€ ๋ฐฉ๋ฒ•์„ ์“ธ ์ˆ˜ ์žˆ๋Š”๋ฐ ํ•œ๋ฒˆ ์‚ดํŽด๋ณด์ž.

Find a 1st basis

์ผ๋‹จ ODE๋ฅผ ๋งŒ์กฑํ•˜๋Š” ์ฒซ๋ฒˆ์งธ Solution $y_1$์„ ์ฐพ์•„์•ผ ํ•œ๋‹ค.

๋ ์šฉ?? ์•„๋‹ˆ ์ฒซ๋ฒˆ์งธ๊ณ  ๋‚˜๋ฐœ์ด๊ณ  $y_1$์„ ์–ด์ผ€ ์ฐพ์œผ๋ž€ ๋ง์ž„?? ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ๊ทธ๋ƒฅ ์„ผ์Šค๋‚˜ ์ง๊ด€์„ ๋ฐœํœ˜ํ•ด์„œ ์ฐพ์œผ๋ผ๊ณ  ํ•œ๋‹ค ใ…‹ใ…‹ ๊ทธ๋ž˜๋„ ์š” โ€œReduction or Orderโ€ ๋ฐฉ๋ฒ•์— ๋”ฐ๋ฅด๋ฉด $y_1$์„ ์ฐพ๊ธฐ๋งŒ ํ•˜๋ฉด $y_2$๋ฅผ ๋ฌด์กฐ๊ฑด ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด์„œ, ์•„๊นŒ ์œ„์—์„œ ๋ดค๋˜ ์ƒ์ˆ˜ ๊ณ„์ˆ˜์˜ ODE์—์„œ ์ค‘๊ทผ์ด ๋‚˜์™”๋˜ ๊ฒฝ์šฐ๋ฅผ ์ƒ๊ฐํ•ด๋ณด์ž. ์ด๋•Œ๋Š” ํ•ด๊ฐ€

  • $y_1 = e^{\lambda x}$
  • $y_2 = x e^{\lambda x}$

์˜€๋Š”๋ฐ, ์ด ๊ฒฝ์šฐ๋„ ์ฒซ๋ฒˆ์งธ ํ•ด $y_1$๋Š” ๊ทผ์˜ ๊ณต์‹์œผ๋กœ ์‰ฝ๊ฒŒ ์ฐพ์•˜์ง€๋งŒ, ๋‘๋ฒˆ์งธ ํ•ด $y_2$๋Š” $y_2 = x \cdot y_1$๊ฐ€ ๋œ๋‹ค๊ณ ๋งŒ ํ•˜๊ณ  ๋„˜์–ด๊ฐ”์—ˆ๋‹ค. ๋‘๋ฒˆ์งธ ํ•ด์—์„œ $x$๊ฐ€ ๋ถ™๊ฒŒ ๋˜๋Š” ์ด์œ ๋ฅผ โ€œReduction of Orderโ€ ๋ฐฉ์‹์œผ๋กœ ์œ ๋„ํ•  ์ˆ˜ ์žˆ๋‹ค.

Substitute

์•”ํŠผ $y_1$๋Š” ์ฐพ์•˜๊ณ , $y_2$๋Š” ๋ญ”์ง€๋Š” ๋ชจ๋ฅด๊ฒ ์ง€๋งŒ, ์•„๋ž˜์™€ ๊ฐ™์ด ์„ค์ •ํ•œ๋‹ค.

\[y_2 = u(x) \cdot y_1(x)\]

๊ทธ๋ฆฌ๊ณ  ๋ณธ๋ž˜์˜ 2nd order ODE์— $y_2$๋ฅผ ๋Œ€์ž…ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด $y_2โ€™$, $y_2^{\prime\prime}$๋ฅผ ๊ตฌํ•œ๋‹ค.

\[\begin{aligned} y_2' &= u' y_1 + u y_1' \\ y_2'' &= u'' y_1 + u' y_1' + u' y_1' + u y_1'' = u'' y_1 + u' \cdot 2 y_1' + u y_1'' \end{aligned}\]

์š”๊ฑธ ์‹์— ๋Œ€์ž…ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์‹์„ $y_1$๊ฐ€ ์•„๋‹ˆ๋ผ $u$์— ๋Œ€ํ•ด์„œ ์ •๋ฆฌํ•œ๋‹ค.

\[\begin{aligned} &y'' + p(x) y' + q(x) y \\ &= \left(u'' y_1 + u' \cdot 2 y_1' + u y_1''\right) + p(x) \cdot \left(u' y_1 + u y_1'\right) + q(x) u y_1 \\ &= (y_1) \cdot u'' + (2y' + p y_1) \cdot u' + \cancel{(y_1'' + p(x) y_1' + q(x) y_1 )} u \\ &= y_1 \cdot u'' + (2y' + p y_1) \cdot u' \\ &= 0 \end{aligned}\]

Solve 1st order ODE

$u$์— ๋Œ€ํ•ด ์ •๋ฆฌํ–ˆ๋”๋‹ˆ $(y_1โ€™โ€™ + p(x) y_1โ€™ + q(x) y_1)$ ๋ถ€๋ถ„์ด $0$์œผ๋กœ ์†Œ๊ฐœ ๋˜๋ฉด์„œ, $uโ€™โ€™$, $uโ€™$์— ๋Œ€ํ•œ ํ…€๋งŒ ๋‚จ๊ฒŒ ๋˜์—ˆ๋‹ค!! ๊ทธ๋ฆฌ๊ณ  ODE์— ๋Œ€ํ•œ ์‹๋„ $uโ€™$์— ๋Œ€ํ•œ 1st order ODE๋กœ ๋ฐ”๋€Œ์—ˆ๋‹ค!!

์ด๋ ‡๊ฒŒ $y_2 = u y_1$๋กœ ๋Œ€์ž…ํ•˜๋ฉด ODE์˜ ์ฐจ์ˆ˜๊ฐ€ 2์—์„œ 1๋กœ ๋–จ์–ด์ง€๊ธฐ ๋•Œ๋ฌธ์— โ€œReduction of Orderโ€๋ผ๋Š” ์ด๋ฆ„์ด ๋ถ™์€ ๊ฒƒ์ด๋‹ค.

๊ทธ ๋‹ค์Œ๋ถ€ํ„ฐ๋Š” $uโ€™$์— ๋Œ€ํ•œ 1st order ODE๋ฅผ ํ’€๊ณ (Separable ODE๋ผ์„œ ๋ณ„๋กœ ์•ˆ ์–ด๋ ค์šธ ๊ฒƒ์ด๋‹ค), $u = \int uโ€™$๋กœ ์ ๋ถ„์„ ์ฐจ๋ก€์ฐจ๋ก€ ํ•˜๋ฉด ๋œ๋‹ค. EzEz

๋งบ์Œ๋ง

๋ญ”๊ฐ€ ์ฒ˜์Œ์— ์š” ๋ฐฉ์‹์„ ๋ณผ ๋•Œ๋Š” ์ข€ ์–ด๋ ต๊ฒŒ ๋Š๊ปด์กŒ๋Š”๋ฐ, ๋’ค์— 2nd order โ€œnonโ€-homo. linear ODE๋ฅผ ํ‘ธ๋Š” ๋ฐฉ๋ฒ•์„ ๋จผ์ € ๋ณด๊ณ  ์˜ค๋‹ˆ๊นŒ ์š” ๋ฐฉ์‹์ด ์‰ฌ์›Œ๋ณด์ธ๋‹ค ใ…‹ใ…‹

๋ญ”๊ฐ€ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์ด๋ž€ ๊ณผ๋ชฉ์ด๋‚˜ ๋ถ„์•ผ ์ž์ฒด๊ฐ€ ํŒจํ„ด๊ณผ ํ’€์ด๋ฒ•์— ๋Œ€ํ•ด ์ฃผ๊ตฌ์žฅ์ฐฝ ๋ฐฐ์šฐ๋Š” ๊ณผ๋ชฉ์ธ ๊ฒƒ ๊ฐ™๋‹ค. ๋ญ”๊ฐ€ ๊ป˜๋ฆ„์ง ํ•˜๋”๋ผ๋„ โ€˜์•„~~ ๊ทธ๋ ‡๊ตฌ๋‚˜~โ€™ํ•˜๋ฉฐ ์–ด๋Š ์ •๋„ ๋„˜์–ด๊ฐ€๋Š” ๊ฒƒ๋„ ํ•„์š”ํ•˜๊ณ , ์•ˆ ๊นŒ๋จน๊ฒŒ ๋ฌธ์ œ๋„ ์ข€ ํ’€์–ด์ฃผ๊ณ  ํ•˜๋Š”๊ฒŒ ํ•„์š”ํ•œ ๊ฒƒ ๊ฐ™๋‹ค.