$r(x)$ ํ•ญ์ด ์žˆ๋Š” ODE์˜ ํ•ด๋ฅผ ๊ตฌํ•˜๋Š” ๋ฐฉ๋ฒ•. ๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•๊ณผ ๋งค๊ฐœ๋ณ€์ˆ˜ ๋ณ€ํ™˜๋ฒ•

7 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค๋งŒโ€ฆ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์€ ์กธ์—…์‹œํ—˜ ๋Œ€์ƒ ๊ณผ๋ชฉ์ด ์•„๋‹ˆ๋ผ๋Š” ๊ฑธ ๋‚˜์ค‘์— ์•Œ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹คโ€ฆ OTLโ€ฆ ๊ทธ๋ž˜๋„ ์ด์™• ์‹œ์ž‘ํ•œ ๊ฑฐ ๋‹ค์‹œ ๋ณต์Šต ์ข€ ํ•ด๋ด…์‹œ๋‹ค! ๐Ÿƒ ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

๋“ค์–ด๊ฐ€๋ฉฐ

์•ž์„  ํฌ์ŠคํŠธ์—์„œ 2nd order Homogeneous linear ODE์˜ ํ•ด๋ฅผ ์–ด๋–ป๊ฒŒ ๊ตฌํ•ด์•ผ ํ•˜๋Š”์ง€๋Š” ์‚ดํŽด๋ดค์—ˆ๋‹ค.

\[y'' + p(x) y' + q(x) y = 0\]
  • $\lambda$์— ๋Œ€ํ•œ 2์ฐจ ๋ฐฉ์ •์‹ ํ’€๊ธฐ (for constant coefficient)
  • $y_1$๋ฅผ ๊ตฌํ•˜๊ณ  Reduction of Order Method ์‚ฌ์šฉํ•ด์„œ $y_2$ ์œ ๋„ํ•˜๊ธฐ

์–ด์ฐŒ์ €์ฐŒ $y_1$, $y_2$๋ฅผ ๊ตฌํ–ˆ๋‹ค๊ณ  ํ•ด๋ณด์ž.


๊ทธ๋Ÿฌ๋‚˜ ์„ธ์ƒ์˜ ๋ชจ๋“  2nd order linear ODE๊ฐ€ homogeneous์ผ๋ฆฌ๋Š” ์—†๋‹ค. ๋ถ„๋ช… $r(x) \ne 0$์ธ ๊ฒฝ์šฐ๊ฐ€ ์žˆ์–ด์„œ non-homogeneous linear ODE๋ฅผ ํ’€์–ด์•ผ ํ•  ์ˆ˜๋„ ์žˆ์„ ๊ฒƒ์ด๋‹ค.

Non-homogeneous linear ODE์˜ ๊ฒฝ์šฐ

์•”ํŠผ ์ด๋ฒˆ ํฌ์ŠคํŠธ์—์„œ๋Š” non-homogeneous linear ODE๋ฅผ ํ‘ธ๋Š” ๋ฐฉ๋ฒ•์„ ์‚ดํŽด๋ณผ ๊ฒƒ์ด๋‹ค.

\[y'' + p(x) y' + q(x) y = r(x)\]

non-homogeneous์˜ ๊ฒฝ์šฐ๋Š” ํ•ด๊ฐ€ ์•„๋ž˜์™€ ๊ฐ™์ด ๊ตฌ์„ฑ๋œ๋‹ค๊ณ  ํ•œ๋‹ค.

\[y = y_h + y_p\]

์œ„์˜ ์‹์—์„œ $y_h$์™€ $y_p$์˜ ์˜๋ฏธ๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

  • $y_h$: non-homo ODE ์‹์—์„œ $r(x) = 0$์ธ homogeneous linear ODE์—์„œ์˜ general solution
  • $y_p$๋Š” non-homo. ODE ์‹์„ ๋งŒ์กฑํ•˜๋Š” ์–ด๋–ค ๊ตฌ์ฒด์ ์ธ ํ•จ์ˆ˜

์ด๋‹ค. ์ด๊ฒŒ ๊ฐ€๋Šฅํ•œ ์ด์œ ๋Š” โ€œ$L(y) = yโ€™โ€™ + p(x) yโ€™ + q(x) y$โ€๋ผ๊ณ  ๋‘˜ ๋•Œ, ์•„๋ž˜์˜ ์‹์„ ๋งŒ์กฑํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

\[L(y_h) + L(y_p) = L(y_h + y_p) = r + 0 = r\]

์•”ํŠผ ํ•ต์‹ฌ์€ โ€œnon-homo ODE์˜ ์ผ๋ฐ˜ํ•ดโ€๊ฐ€ โ€œhomo ODE์˜ ์ผ๋ฐ˜ํ•ดโ€ + โ€œnon-homo ODE์˜ ํŠน์ •ํ•ดโ€๋กœ ๊ตฌ์„ฑ๋œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.

How to solve non-homogeneous linear ODE

Method of undetermined coefficients

โ€œ๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•โ€๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. non-homo ODE์˜ ์šฐํ•ญ์ธ $r(x)$๊ฐ€ ์•„๋ž˜์˜ ํ•จ์ˆ˜์ด๊ฑฐ๋‚˜ ๊ทธ๋“ค์˜ linear combination ์ผ ๋•Œ ์š” ๋ฐฉ๋ฒ•์„ ์“ธ ์ˆ˜ ์žˆ๋‹ค.

  • exponential: $e^x$
  • power of $x$ = polynomial: $x^n$
  • cosine or sine

์œ„์˜ ํ•จ์ˆ˜๋“ค์˜ ํŠน์ง•์€ ๋ฏธ๋ถ„์ด๋‚˜ ์ ๋ถ„์ด ๊ทธ ์นดํ…Œ๊ณ ๋ฆฌ ์•ˆ์—์„œ ๋…ธ๋Š” ์•„์ฃผ ๋‚˜์ด์Šคํ•œ ํ•จ์ˆ˜๋ผ๋Š” ๊ฒƒ์ด๋‹ค.

์š” โ€œ๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•โ€์€ ์˜ˆ์ œ ๋ช‡๋ฌธ์ œ ํ’€์–ด๋ณด๋ฉด ๊ธˆ๋ฐฉ ๊ฐ์„ ์žก์„ ์ˆ˜ ์žˆ๋‹ค.

Example 1

Solve the given ODE

\[y'' + y = 0.001 x^2\]

๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•์— ๋”ฐ๋ผ $y_p$๋ฅผ ์ตœ๊ณ ์ฐจํ•ญ 2์˜ polynomial๋กœ ์„ค์ •ํ•œ๋‹ค.

\[y_p = a_2 x^2 + a_1 x + a_0\]

๊ทธ๋Ÿฌ๊ณ , $y_pโ€™$, $y_p^{\prime \prime}$๋ฅผ ๊ตฌํ•ด์„œ ๋Œ€์ž…ํ•˜๋ฉดโ€ฆ

\[2a_2 + (a_2 x^2 + a_1 x + a_0) = 0.001 x^2\]

๊ฐ $x^n$๋ณ„๋กœ ๊ณ„์ˆ˜๋ฅผ ๋น„๊ตํ•ด ๊ตฌํ•˜๋ฉดโ€ฆ

  • $a_2 = 0.001$
  • $a_1 = 0$
  • $a_0 = - 0.002$

Example 2: Modification Rule

Solve the given ODE

\[y'' - 6 y' + 9 y = 12 e^{3x}\]

์š” ODE์˜ homogeneous solution $y_h$๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[y_h = (c_1 + c_2 x) e^{3x}\]

๊ทธ๋Ÿฐ๋ฐ, ๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•์— ๋”ฐ๋ผ $y_p$๋ฅผ ์žก์œผ๋ฉด, $y_p = C e^{3x}$๊ฐ€ ๋˜๋Š”๋ฐ, ์š”๊ฒŒ $y_h$์™€ linearly dependent ํ•˜๊ธฐ ๋•Œ๋ฌธ์— particular solution์œผ๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์—†๋‹ค.

์ง€๊ธˆ์ฒ˜๋Ÿผ ๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•์˜ ๊ทœ์น™์— ๋”ฐ๋ผ ์„ค์ •ํ•œ $y_p$์ด $y_h$์™€ ์ผ์ฐจ ์ข…์†์ด ๋˜๋Š” ๊ฒฝ์šฐ, $y_p$์ด $x$ ๋˜๋Š” $x^2$๋ฅผ ๊ณฑํ•˜์—ฌ ์ผ์ฐจ ์ข…์†์ด ๋˜์ง€ ์•Š๋„๋ก ๋งŒ๋“  ํ›„, ๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•์„ ์ ์šฉํ•œ๋‹ค. ์ด๋ฒˆ์—๋Š” $x^2$๋ฅผ ๊ณฑํ•ด์„œ $y_p$๋ฅผ ์„ค์ •ํ•˜๊ณ  ODE๋ฅผ ํ’€์–ด๋ณด์ž.

\[y_p = C x^2 e^{3x}\] \[\left(9C x^2 e^{3x} + 12 C x e^{3x} + 2C e^{3x}\right) + -6 \cdot \left(3Cx^2 e^{3x} + 2C x e^{3x}\right) + 9 \cdot C x^2 e^{3x} = 12 e^{3x}\]

๊ณ„์ˆ˜๋ฅผ ๋น„๊ตํ•ด $C$๋ฅผ ๊ตฌํ•ด๋ณด๋ฉดโ€ฆ

  • $0 \cdot x^2 e^{3x}$
  • $0 \cdot x e^{3x}$
  • $2 C e^{3x} = 12 e^{3x}$

๋”ฐ๋ผ์„œ $C = 6$์ด ๋˜๊ณ , particular solution $y_p = 6 x^2 e^{3x}$๊ฐ€ ๋œ๋‹ค.

Method of variation of parameters

โ€œ๋งค๊ฐœ๋ณ€์ˆ˜ ๋ณ€ํ™˜๋ฒ•โ€๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์•ž์—์„œ ์‚ดํŽด๋ณธ ๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•์€ $r(x)$์˜ ๋„ํ•จ์ˆ˜๊ฐ€ ์ž๊ธฐ ์ž์‹ ๊ณผ ์œ ์‚ฌํ•œ ๋…€์„์ธ ๊ฒฝ์šฐ์—๋งŒ ์“ธ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์š” ๋งค๊ฐœ๋ณ€์ˆ˜ ๋ณ€ํ™˜๋ฒ•์€ $r(x)$๊ฐ€ ์ข€๋” ์ผ๋ฐ˜์ ์ธ ์ƒํ™ฉ์—์„œ ์“ธ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ๋งค๊ฐœ๋ณ€์ˆ˜ ๋ณ€ํ™˜๋ฒ•์—์„œ๋Š” $r(x)$๊ฐ€ ์—ฐ์† ํ•จ์ˆ˜์ด๊ธฐ๋งŒ ํ•˜๋ฉด ๋œ๋‹ค!

๋งค๊ฐœ๋ณ€์ˆ˜ ๋ณ€ํ™˜๋ฒ•์—์„œ๋Š” particular solution $y_p$๋ฅผ ์•„๋ž˜์˜ ๊ณต์‹์œผ๋กœ ๊ตฌํ•œ๋‹ค.

\[y_p = - y_1 \int \frac{y_2 r}{W} dx + y_2 \int \frac{y_1 r}{W} dx\]
  • $y_1$, $y_2$๋Š” ๋Œ€์‘ํ•˜๋Š” homogeneous ODE์˜ basis
  • $W$๋Š” Wronskian of $y_1$, $y_2$: $W = y_1 y_2โ€™ - y_2 y_1โ€™$

์™œ ์ด๋Ÿฐ ๊ณต์‹์ด ๋‚˜์˜ค๋Š”์ง€๋Š”โ€ฆ ์ƒ๋žตํ•œ๋‹ค!! (๋‚˜๋Š” ์ปด๊ณต๊ณผ๋‹ˆ๊นŒ!!)

Example 1

์š”๊ฒƒ๋„ ๊ฐ„๋‹จํ•œ ์˜ˆ์ œ๋ฅผ ์‚ดํŽด๋ณด์ž.

Solve the given ODE

\[y'' + y = \sec x\]

basis๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

  • $y_1 = \cos x$
  • $y_2 = \sin x$

Wroskian์„ ๊ตฌํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[W(y_1, y_2) = \cos x \cos x - \sin x (- \sin x) = 1\]

์ด์ œ ๋งค๊ฐœ๋ณ€์ˆ˜ ๋ณ€ํ™˜๋ฒ•์˜ ๊ณต์‹์— ๋งž๊ฒŒ ๋Œ€์ž…ํ•˜๋ฉด

\[\begin{aligned} y_p &= - \cos x \cdot \int \sin x \frac{1}{\cos x} \, dx + \sin x \cdot \int \cos x \frac{1}{\cos x} \, dx \\ &= \cos x \ln \left| \cos x \right| + x \sin x \end{aligned}\]

๋งบ์Œ๋ง

์–ด๋–ป๊ฒŒ ๋ณด๋ฉด, 2์ฐจ ๋ฏธ๋ฐฉ์„ ํ‘ธ๋Š” ํ…Œํฌ๋‹‰์„ ์Šต๋“ํ•˜๋Š” ํŒŒํŠธ์˜€๋‹ค. ๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•์€ ๋ญ”๊ฐ€ ์‰ฝ๊ฒŒ ๋ฐ›์•„๋“ค์ธ ๊ฒƒ ๊ฐ™์€๋ฐ, ๋งค๊ฐœ๋ณ€์ˆ˜ ๋ณ€ํ™˜๋ฒ•์€ ์•„์ง $y_p$ ๊ณต์‹์ด ๋ˆˆ์— ์ž˜ ์•ˆ ๋“ค์–ด์˜ค๋Š” ๊ฒƒ ๊ฐ™๋‹ค. ์ƒ๊ฐํ•ด๋ณด๋ฉด ์•„์ง Wronskian $W(y_1, y_2)$ ๊ณต์‹๋„ ์ต์ˆ™ํ•˜์ง€ ์•Š์œผ๋‹ˆ ใ…‹ใ…‹

์ด์ œ ์Šฌ์Šฌ ๋ฏธ๋ฐฉ๊ณผ ํ–‰๋ ฌ์„ ๊ฐ™์ด ์“ฐ๋Š” ๋‹จ๊ณ„๊ฐ€ ๋‹ค๊ฐ€์˜ค๋Š” ๊ฒƒ ๊ฐ™๋‹คโ€ฆ! ์ด๋ฒˆ 24-2ํ•™๊ธฐ์— ๋“ฃ๋Š” ์ƒ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ์ˆ˜์—…์—์„œ ๊ต์ˆ˜๋‹˜์ด ์ง„์งœ ํ•˜๋ฃจ๋„ ๋น ์ง์—†์ด ํ–‰๋ ฌ์˜ eigenvalue์— ๋”ฐ๋ผ ๋ฏธ๋ฐฉ์ด ์–ด๋–ป๊ฒŒ ์›€์ง์ด๋Š”์ง€ ์„ค๋ช…ํ•˜์‹œ๋Š” ๊ฒƒ ๊ฐ™๋‹คโ€ฆ ใ…‹ใ…‹

์•„๋ฌดํŠผโ€ฆ! ํ™งํŒ…!!