Systems of ODEs๋ฅผ ์ผ๋ฐ˜์ ์ธ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด.

7 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค๋งŒโ€ฆ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์€ ์กธ์—…์‹œํ—˜ ๋Œ€์ƒ ๊ณผ๋ชฉ์ด ์•„๋‹ˆ๋ผ๋Š” ๊ฑธ ๋‚˜์ค‘์— ์•Œ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹คโ€ฆ OTLโ€ฆ ๊ทธ๋ž˜๋„ ์ด์™• ์‹œ์ž‘ํ•œ ๊ฑฐ ๋‹ค์‹œ ๋ณต์Šต ์ข€ ํ•ด๋ด…์‹œ๋‹ค! ๐Ÿƒ ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

๋“ค์–ด๊ฐ€๋ฉฐ

์ด์ œ ์ „์ฒด ๋ฒ”์œ„์˜ 1/4 ์ •๋„ ์ง€๋‚œ ๊ฒƒ ๊ฐ™์€๋ฐ, ๋ฒŒ์จ ๋‚ด์šฉ์ด ์–ด๋ ต๋‹คโ€ฆ;; ๊ทธ๋ž˜๋„ ์–ด์ฉŒ๊ฒ ๋Š”๊ฐ€ ์กธ์—…์„ ํ•ด์•ผ ํ•˜๋‹ˆ๊นŒโ€ฆ ์•…์œผ๋กœ ๊นก์œผ๋กœ ๋ฒ„ํ…จ๋ณธ๋‹ค!!

To solve ODEโ€ฆ

์ง€๊ธˆ๊นŒ์ง€ $Xโ€™ = AX$ ๊ผด์˜ ODE System์„ ํ’€๊ธฐ ์œ„ํ•ด ํ–ˆ๋˜ ๋ฐฉ๋ฒ•๋“ค์„ ์ƒ๊ฐํ•ด๋ณด์ž.

  1. ํ–‰๋ ฌ $A$์— ๋Œ€ํ•œ eigen value์™€ eigen vector๋ฅผ ์ฐพ๋Š”๋‹ค.
  2. $X(t)$๋ฅผ $X_1(t) = v_1 e^{\lambda_1 t} + v_2 e^{\lambda_2 t}$๋กœ ํ‘œํ˜„ํ•œ๋‹ค.
  3. ๋งŒ์•ฝ $A$์˜ canonical form์ด Jordan Form $J$๋ผ๋ฉด, generalized eigen value๋ฅผ ๋„์ž…ํ•œ๋‹ค.

๊ทธ๋Ÿฐ๋ฐ ๊ท€์ฐฎ๊ฒŒ Eigen value ๊ตฌํ•˜๊ณ  ํ•  ํ•„์š” ์—†์ด ์•„์ฃผ ์‰ฝ๊ฒŒ ์†”๋ฃจ์…˜์„ ํ‘œํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์žˆ์—ˆ์œผ๋‹ˆโ€ฆ

Let $A$ be an $n \times n$ matrix. Then the initial value problem $Xโ€™ = AX$ and $X(0) = X_0$ has an unique solution

\[X(t) = e^{tA} X_0\]

์ •๋ฆฌ์— ๋Œ€ํ•œ ์ฆ๋ช…์€ Existence์™€ Uniqueness๋ฅผ ๋ณด์ด๋ฉด ๋˜๋Š”๋ฐโ€ฆ

[Existence]

Solution์ด๋ผ๊ณ  ์ œ์‹œํ•œ $X(t) = e^{tA} X_0$๊ฐ€ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์„ ๋งŒ์กฑํ•˜๋Š”์ง€ ์ฒดํฌํ•˜๋ฉด ๋œ๋‹ค. ๋งŒ์•ฝ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์„ ๋งŒ์กฑํ•œ๋‹ค๋ฉด, Solution ์ค‘ ํ•˜๋‚˜๋ฅผ ์ฐพ์€ ๊ฒƒ์ด๋‹ค!

\[X' = \frac{d}{dt} X(t) = \frac{d}{dt} \left(e^{tA} X_0\right) = A e^{tA} X_0 = A X\]

[Uniqueness]

๋ฏธ๋ถ„๋ฐฉ์ •์‹์— ๋˜๋‹ค๋ฅธ solution์ด ์กด์žฌํ•˜๊ณ , ๊ทธ๊ฒƒ์„ $Y(t)$๋ผ๊ณ  ๊ฐ€์ •ํ•ด๋ณด์ž. ๊ทธ๋ฆฌ๊ณ  $Z(t) = e^{-tA} Y(t)$์ธ ํ–‰๋ ฌ์„ ๋˜ ์ •์˜ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  $Zโ€™(t)$๋ฅผ ๊ตฌํ•ด๋ณด๋ฉดโ€ฆ

\[Z'(t) = \frac{d}{dt} \left( e^{-tA} Y(t) \right) = -A e^{-tA} Y(t) + e^{-tA} Y'(t) = -A e^{-tA} Y(t) + e^{-tA} \cdot \left( A Y(t)\right) = 0\]

$Zโ€™(t) = 0$๋ผ๋Š” ๊ฒฐ๊ณผ๋Š” $Z(t)$ ํ•จ์ˆ˜๊ฐ€ constant ํ•จ์ˆ˜๋ผ๋Š” ๊ฒƒ์ด๊ณ , ์ด๋Š”

\[Z(t) = e^{-tA} Y(t) = Z_0 = Y(0) = X_0\]

๋ผ๋Š” ๊ฒฐ๊ณผ๋กœ ์ด์–ด์ง„๋‹ค. ์ฆ‰, $Y(t) = Z(t) e^{tA} = X_0 e^{tA}$๊ฐ€ ๋˜๊ณ , ์ด๊ฒƒ์€ ์ฒ˜์Œ์— ๊ฐ€์ •ํ–ˆ๋˜ $X(t)$์— ๋Œ€ํ•œ solution๊ณผ ์ผ์น˜ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ, solution์€ ์œ ์ผํ•˜๊ฒŒ ์กด์žฌํ•œ๋‹ค. $\blacksquare$

Non-autonomous Linear System

์ง€๊ธˆ๊นŒ์ง€๋Š” ์‚ดํŽด๋ณธ $Xโ€™ = AX$ ๊ฒฝ์šฐ๋Š” ์ •๋ง ๋‚˜์ด์Šคํ•œ ๊ฒฝ์šฐ๋‹ค. ํ•˜์ง€๋งŒ ํ˜„์‹ค์€ ๊ฐ€ํ˜นํ•œ ๋ฒ•โ€ฆ ใ… ใ…  ์•„๋ž˜์™€ ๊ฐ™์€ ํ˜•ํƒœ์˜ Linear System์„ ์‚ดํŽด๋ณด์ž.

\[X' = AX + G(t)\]

์ด๋•Œ, $G(t)$๋Š” ์‹œ๊ฐ„ $t$์— ์˜์กดํ•˜๋Š” โ€œforcing termโ€์œผ๋กœ $G: \mathbb{R} \rightarrow \mathbb{R}^n$์ด๋‹ค.

์œ„์™€ ๊ฐ™์€ ๊ฒฝ์šฐ, ๋ฏธ๋ถ„๋ฐฉ์ •์‹์ด ์‹œ๊ฐ„์— ์˜์กดํ•˜๋Š” ํ…€ $G(t)$๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, โ€œnon-autonomousโ€์ด๋ฉด์„œ, ๋ฏธ๋ฐฉ์„ ์ •๋ฆฌํ•˜๋ฉด, $Xโ€™ - AX = G(t)$๋กœ ์šฐ๋ณ€์ด $0$์ด ์•„๋‹Œ ๊ฐ’์ด๊ธฐ ๋•Œ๋ฌธ์— โ€œnon-homogeneousโ€ Linear System์ด๋‹ค.

2ํ•™๋…„ ๋ฏธ๋ฐฉ(MATH200)์—์„œ๋„ 2์ฐจ ๋ฏธ๋ฐฉ์—์„œ ์ด๋Ÿฐ ๊ฒฝ์šฐ๊ฐ€ ์žˆ์—ˆ๋‹ค.

\[y'' + p(x) y' + q(x) y = r(x)\]

์ด๋•Œ๋Š” ๊ทธ๋ž˜๋„ ์ข€ ํ• ๋งŒ ํ–ˆ๋‹ค.

  • ๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•(method of undetermined coefficients)
  • ๋งค๊ฐœ๋ณ€์ˆ˜ ๋ณ€ํ™˜๋ฒ•(method of variation of parameters)

๋ฅผ ํ†ตํ•ด์„œ ํ•ด๊ฒฐํ–ˆ๋‹ค.


๋‹คํ–‰ํžˆ๋„ Systems ODE์—์„œ๋Š” General Solution์— ๋Œ€ํ•œ ๊ณต์‹์ด ์กด์žฌํ•œ๋‹ค!! ์ด๋ฅผ โ€œDuhamelโ€™s principleโ€œ๋ผ๊ณ  ํ•œ๋‹ค.

Consider the non-autonomous ODE $Xโ€™ = AX + G(t)$ and $X(0) = X_0$ where $A$ is an $n \times n$ matrix. $G(t)$ is a continuous function of $t$. Then,

\[X(t) = e^{tA} \left( X_0 + \int_0^t e^{-sA} G(s) ds \right)\]

is the solution.

์–ผํ• ๋ณด๋ฉด 1st order non-homo. ODE์—์„œ Integrating Factor๋ฅผ ๋„์ž…ํ–ˆ๋˜ ๊ฒƒ๊ณผ ๋น„์Šทํ•œ ๋ชจ์Šต์ด๋‹ค.

[1st order non-homo. ODE]

\[x' = p(t) x + r(t)\]

I.F.๋Š” $F(t) = \exp (\int - p(t) \, dt)$์ด๊ณ , ์ด๊ฒƒ์„ solution์€ ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[x(t) = F(t)^{-1} \left(x_0 + \int r(t) \, F(t)^{-1} \, dt \right)\]

Duhamel์˜ ๊ฒฐ๊ณผ์™€ ์‰ฝ๊ฒŒ ๋น„๊ตํ•˜๊ธฐ ์œ„ํ•ด ์‹์„ ์กฐ๊ธˆ ๋‹จ์ˆœํ™” ํ•˜์ž. $h = \int p(t) dt$๋กœ ๋‘๋ฉดโ€ฆ

\[x(t) = e^{h} \left( x_0 + \int_0^t e^{-h} r(s) \, ds \right)\]

์ฆ‰, Duhamelโ€™s principle์€ 1st order์—์„œ์˜ ๊ณต์‹์„ ํ–‰๋ ฌ ๋ฒ„์ „์œผ๋กœ ํ™•์žฅํ•œ ๊ฒƒ์ด๋‹ค!!

์ฆ๋ช…์€ ์ฃผ์–ด์ง„ ๊ณต์‹์„ ์‹ค์ œ๋กœ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์— ๋Œ€์ž…ํ•ด๋ณด๋ฉด ๋œ๋‹ค.

\[\begin{aligned} X'(t) &= A \cdot \left(e^{tA} \left( X_0 + \int_0^t e^{-sA} G(s) ds \right) \right) + \cancel{e^{tA}} \left( \cancel{e^{tA}} G(t) \right) \\ &= A \cdot X(t) + G(t) \end{aligned}\]

Example: Forced Harmonic Oscillation

Linear ODE์— ๋Œ€ํ•ด์„œ๋Š” Harmonic Oscillation ํฌ์ŠคํŠธ์— ์ž์„ธํžˆ ์ •๋ฆฌํ•ด๋‘” ์ ์ด ์žˆ๋‹ค. ์ด๋ฒˆ์—๋Š” ์ด๊ฒƒ์„ Systems of ODEs์˜ ๊ด€์ ์—์„œ ํ•ด์„ํ•ด์กด๋‹ค.

\[X'(t) = \left(\begin{matrix} 0 & 1 \\ -k & -b \end{matrix}\right) X + \left(\begin{matrix} 0 \\ f(t) \end{matrix}\right)\]

์ด๋•Œ, ์™ธ๋ถ€ํž˜ $f(t)$๋ฅผ ์ฃผ๊ธฐํ•จ์ˆ˜ $\cos t$๋ผ๊ณ  ํ•˜์ž.

(์•„๋ž˜ ๋‚ด์šฉ์€ ์ˆ˜์—… ๋•Œ ๋ฐฐ์› ๋Š”๋ฐ, ์•„์ง ๋‚ด์šฉ์„ ์™„์ „ํžˆ ์ดํ•ดํ•˜์ง€ ๋ชป ํ–ˆ๋‹ค. ๊ต์ˆ˜๋‹˜๊ป˜ ์ดํ•ด ์•ˆ ๋˜๋Š” ๋ถ€๋ถ„์„ ์—ฌ์ญค๋ณด๊ณ  ์ด์–ด์„œ ์ž‘์„ฑํ•  ์˜ˆ์ •์ด๋‹ค. [24/11/13])

[periodic solution]

๊ฐ€์žฅ ๋จผ์ € solution์ด ์ฃผ๊ธฐ๊ฐ€ $2\pi$์ธ unique periodic solution์„ ๊ฐ€์ง„๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ผ ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ๋ณด์ด๊ธฐ ์œ„ํ•ด์„  $X(0) = X_0 = X(2\pi)$์ž„์„ ๋ณด์—ฌ์•ผ ํ•œ๋‹ค.

๋งŒ์•ฝ $X(0) = X(2\pi)$๋ผ๋ฉด Duhamelโ€™s Principle ๊ณต์‹์— ๋”ฐ๋ผ ์•„๋ž˜์˜ ์‹์ด ์„ฑ๋ฆฝํ•  ๊ฒƒ์ด๋‹ค.

\[X_0 = e^{2\pi A} X_0 + e^{2\pi A} \int_0^{2\pi} e^{-sA} \, G(s) ds\]

์ด๋•Œ, ์šฐ๋ณ€์—์„œ ์•„๋ž˜์— ๋Œ€ํ•œ ๋ถ€๋ถ„์€ constant vector์ด๊ณ , ์ด๋ฅผ $W$๋ผ๊ณ  ์ด๋ฆ„ ๋ถ™์ด์ž.

\[W = e^{2\pi A} \int_0^{2\pi} e^{-sA} \, G(s) ds = \text{const.}\]

์œ„์˜ ์‹์„ $X_0$์— ๋Œ€ํ•ด ์ •๋ฆฌํ•˜๋ฉด

\[\left(e^{2\pi A} - I\right) X_0 = -W\]

์ด๋•Œ $\left(e^{2\pi A} - I\right)$ ํ–‰๋ ฌ์ด invertible ํ•  ์ˆ˜๋„ ์žˆ๊ณ , non-invertible ํ•  ์ˆ˜๋„ ์žˆ๋‹ค.

(a) If $\left(e^{2\pi A} - I\right)$ is invertible

Straightforward,

\[X_0 = (e^{2\pi A} - I)^{-1} (- W)\]

(a) If $e^{2\pi A} - I$ is non-invertible

Meaning of Method of Variation of Parameters

์™œ Duhamelโ€™s Theorem์ด variaiton of parameter ๊ธฐ๋ฒ•์ธ์ง€