2์ฐจ ์„ ํ˜• ๋ฏธ๋ถ„๋ฐฉ์ •์‹์„ ๊ฐ€์žฅ ์‰ฝ๊ฒŒ ์„ค๋ช…ํ•˜๋Š” ๋ฌผ๋ฆฌ ํ˜„์ƒ. ์™ธ๋ถ€ํž˜์ด ๊ฐ€ํ•ด์ง€๋Š” ์‹œ์Šคํ…œ์„ ์–ด๋–ป๊ฒŒ ํ•ด์„ํ• ์ง€์— ๋Œ€ํ•ด. ๐Ÿช€

10 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค๋งŒโ€ฆ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์€ ์กธ์—…์‹œํ—˜ ๋Œ€์ƒ ๊ณผ๋ชฉ์ด ์•„๋‹ˆ๋ผ๋Š” ๊ฑธ ๋‚˜์ค‘์— ์•Œ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹คโ€ฆ OTLโ€ฆ ๊ทธ๋ž˜๋„ ์ด์™• ์‹œ์ž‘ํ•œ ๊ฑฐ ๋‹ค์‹œ ๋ณต์Šต ์ข€ ํ•ด๋ด…์‹œ๋‹ค! ๐Ÿƒ ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

๋“ค์–ด๊ฐ€๋ฉฐ

๋ณธ์ธ์€ ๊ฐœ์ธ์ ์œผ๋กœ โ€œ๋ฌผ๋ฆฌโ€ ๊ณผ๋ชฉ์ด๋ž‘ ์ž˜ ์•ˆ ๋งž๋Š” ๊ฒƒ ๊ฐ™์•„์„œ, ์ˆ˜ํ•™ ๊ณต๋ถ€ํ•  ๋•Œ ๋ฌผ๋ฆฌ ๋‚ด์šฉ ๋‚˜์˜ค๋Š” ๊ฒƒ๋“ค์€ ๋Œ€์ถฉ ๋„˜๊ธฐ๋Š” ๋ฒ„๋ฆ‡์ด ์žˆ์Šต๋‹ˆ๋‹คโ€ฆ. ๊ทธ๋Ÿฐ๋ฐ ๋ฏธ๋ฐฉ์„ ๊ณต๋ถ€ํ•ด๋ณด๋‹ˆโ€ฆ ์ƒ๊ฐ๋ณด๋‹ค ๋ฌผ๋ฆฌ๋กœ ์„ค๋ช…ํ•˜๋ฉด ์ดํ•ดํ•˜๊ธฐ ์‰ฌ์›Œ์ง€๋Š” ๊ฒฝํ—˜์„ ํ•˜๊ฒŒ ๋œ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค ๋“œ๋””์–ด

G. Strange - CalculusVolume3-OP

๊ทธ๋Ÿฐ ์ ์—์„œ Harmonic Oscillation์€ 2์ฐจ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์„ ๊ฐ€์žฅ ์‰ฝ๊ฒŒ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋Š” ๋„๊ตฌ์ธ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ์ž˜ ์™€๋‹ฟ๊ธฐ๋„ ํ•˜๊ณ  ์ƒ์ƒํ•˜๊ธฐ๋„ ์‰ฝ์Šต๋‹ˆ๋‹ค.

Simple Harmonic Oscillation

\[x'' + kx = 0\]

์กฐํ™” ์ง„๋™์ž์—์„œ ๊ฐ€์žฅ ๊ฐ„๋‹จํ•œ ์ƒํ™ฉ์ž…๋‹ˆ๋‹ค. ์œ„์˜ Fig 7.2์˜ ์ƒํ™ฉ์œผ๋กœ ๋ฌผ์ฒด์˜ ๋ณ€์œ„ $x$์— ๋”ฐ๋ผ ์ž‘์šฉํ•˜๋Š” ์šฉ์ˆ˜์ฒ  ํž˜ $-kx$๋งŒ ๊ณ ๋ คํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค.

๋ฏธ๋ฐฉ ์ˆ˜์—…์—์„œ ๋ฐฐ์šฐ๋Š” 2์ฐจ homogeneous ODE๋ฅผ ํ‘ธ๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์‰ฝ๊ฒŒ ํ’€ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

\[\lambda^2 + k \lambda = 0\]

ํŠน์„ฑ๋ฐฉ์ •์‹์„ ํ’€๋ฉด ๋˜๋Š”๋ฐ, ํ—ˆ๊ทผ์ด ๋‚˜์˜ค๋Š” ๊ฒฝ์šฐ์ž…๋‹ˆ๋‹ค. ์ด๋•Œ, ์‹ค๊ทผ ์—†์ด ํ—ˆ์ˆ˜๋ถ€๋งŒ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.

\[\lambda = \frac{-0 \pm \sqrt{0^2 - 4 k}}{2} = \pm \sqrt{-k} = \pm \sqrt{k} \cdot i\]

์š” $\lambda$๋ฅผ solution์— ๋Œ€์ž…ํ•˜๊ณ , ๊ทธ๊ฒƒ์„ ์˜ค์ผ๋Ÿฌ ๊ณต์‹์œผ๋กœ ์ง€์ˆ˜ํ•จ์ˆ˜๋กœ ๋ณ€ํ™˜ํ•˜๋ฉดโ€ฆ

\[x(t) = e^{\lambda t} = e^{\pm \sqrt{k} \cdot i} = \cos (\sqrt{k} t) \pm i \sin (\sqrt{k} t)\]

ํ‘œํ˜„์„ ๊ฐ„๋‹จํžˆ ํ•˜๊ธฐ ์œ„ํ•ด ์ฃผ๊ธฐ $\omega$๋กœ ํ‘œํ˜„ํ•˜๊ฒ ๋‹ค: $\omega = \sqrt{k}$.

์š”๊ฑธ ์‹ค์ˆ˜๋ถ€๋งŒ ๋‚จ๊ฒจ์„œ ์ •๋ฆฌํ•˜๋ฉดโ€ฆ (2์ฐจ homo. ODE ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์—์„œ ๋งŽ์ด ๋Œ€์ถฉ ๋„˜์–ด๊ฐ€๋Š” ์ค‘)

  • $x_1(t) = \cos \omega t$
  • $x_2(t) = \sin \omega t$

์ง„๋™์ž๋Š” ๋ฌดํ•œํžˆ ์ฃผ๊ธฐ ์šด๋™์„ ํ•œ๋‹ค.

Damped Harmonic Oscillation

Simple ๊ฒฝ์šฐ๋Š” ์ •๋ง ๊ฐ„๋‹จํ•˜๋‹ค. ์—ฌ๊ธฐ์„œ๋ถ€ํ„ฐ ์กฐ๊ธˆ ๋ณต์žกํ•ด์ง€๋Š”๋ฐ, ๊ทธ๋ž˜๋„ ๋ฏธ๋ฐฉ์˜ ๋‹ค๋ฅธ ๋” ์–ด๋ ค์šด ๊ฒƒ๋“ค์„ ๊ฒช๊ณ  ๋‚˜๋ฉด ์ด๊ฒƒ๋„ ์ข€ ์‰ฌ์›Œ๋ณด์ธ๋‹ค ใ…‹ใ…‹

\[x'' + bx' + kx = 0\]

์ด๋ฒˆ์—๋Š” damping force์ธ $-bxโ€™$๊ฐ€ ์ถ”๊ฐ€๋˜์—ˆ๋‹ค. ์š”๊ฑฐ๋Š” ์†๋„์— ๋น„๋ก€ํ•˜๋Š” ํž˜์œผ๋กœ, ๊ณต๊ธฐ(๋งค์งˆ)์— ๋Œ€ํ•œ ์ €ํ•ญ๋ ฅ์ด๋‚˜ ๋งˆ์ฐฐ๋ ฅ์œผ๋กœ ํ•ด์„ํ•œ๋‹ค.

์š”๊ธฐ์„œ๋ถ€ํ„ฐ๋Š” ๊ณต์‹์œผ๋กœ ๋‹ต์„ ๊ตฌํ•  ๋•Œ ํ•ญ์ƒ ์‹ค์ˆ˜๋ถ€๊ฐ€ ์กด์žฌํ•œ๋‹ค.

\[\lambda = \frac{-b \pm \sqrt{b^2 - 4k}}{2}\]

๊ทธ๋ฆฌ๊ณ  $b^2 - 4k$๊ฐ€ ์–‘์ˆ˜, ์Œ์ˆ˜, ์ค‘๊ทผ์ธ ๊ฒฝ์šฐ๋กœ ๋‚˜๋ˆ„๋Š”๋ฐโ€ฆ


[์–‘์ˆ˜: $b^2 - 4k > 0$]

$x(t) = e^{\lambda t}$๋กœ solution์ด ๊ตฌํ•ด์ง€๋Š”๋ฐ, ์ด๋•Œ ์œ ์˜ํ•  ์ ์ด $\lambda$๊ฐ€ ํ•ญ์ƒ โ€œ์Œ์ˆ˜โ€œ๋ผ๋Š” ๊ฒƒ์ด๋‹ค. ๊ทธ ์ด์œ ๋Š” ๋ณ„๊ฑฐ ์—†๊ณ  ๊ทธ๋ƒฅ $b \ge \sqrt{b^2 - 4k}$์ด๊ธฐ ๋•Œ๋ฌธ.

์•”ํŠผ $e^{\lambda t}$์—์„œ ์ง€์ˆ˜๋ถ€๊ฐ€ ์Œ์ˆ˜์ด๊ธฐ ๋•Œ๋ฌธ์—, ํ•ญ์ƒ $t \rightarrow \infty$์—์„œ 0์œผ๋กœ ์ˆ˜๋ ดํ•œ๋‹ค.


[์ค‘๊ทผ: $b^2 - 4k > 0$]

์š”๊ฒƒ $\lambda = - b /2$๊ฐ€ ๋˜๋Š”๋ฐ, ์Œ์ˆ˜์ด๊ธฐ ๋•Œ๋ฌธ์— ํ•จ์ˆ˜๊ฐ€ 0์œผ๋กœ ์ˆ˜๋ ดํ•œ๋‹ค. ๋‹ค๋งŒ, ์ด ๊ฒฝ์šฐ solution ํ•จ์ˆ˜์˜ basis๊ฐ€ ํ•˜๋‚˜๋งŒ ๋‚˜์˜ค๊ธฐ ๋•Œ๋ฌธ์—, $t$ํ…€์„ ๋ถ™์—ฌ์„œ ์†”๋ฃจ์…˜์ด ์•„๋ž˜์™€ ๊ฐ™์ด ๋‚˜์˜จ๋‹ค.

  • $x_1(t) = e^{\frac{-b}{2}t}$
  • $x_2(t) = t e^{\frac{-b}{2}t}$


[์Œ์ˆ˜: $b^2 - 4k < 0$]

ํ—ˆ๊ทผ์ด ๋‚˜์˜ค๋Š”๋ฐ, Simple ์ผ€์ด์Šค์™€ ๋‹ฌ๋ฆฌ ์‹ค์ˆ˜๋ถ€๊ฐ€ ์กด์žฌํ•œ๋‹ค.

๋”ฐ๋ผ์„œ, ์‹์ด ์•„๋ž˜์™€ ๊ฐ™์ด ๊ณ„์‚ฐ๋˜๋Š”๋ฐ

\[x(t) = e^{-\frac{b}{2}t} \left( \cos \omega t \pm i \sin \omega t \right)\]

์š”๊ฒƒ๋„ ์‹ค์ˆ˜๋ถ€๋งŒ ๋‚จ๊ฒจ์„œ ํ‘œํ˜„ํ•˜๋ฉดโ€ฆ

\[x(t) = e^{-\frac{b}{2}t} \left( C_1 \cos \omega t + C_2 \sin \omega t \right)\]

Damping ์ผ€์ด์Šค์—์„œ ์žฌ๋ฐŒ๊ฒŒ ๋ณธ ๋ถ€๋ถ„์€ ๊ทธ๋ž˜ํ”„ ๋ชจ์–‘์— ์žˆ๋‹ค.

http://www.physicsbootcamp.org

์‹ ๊ธฐํ•˜๊ฒŒ๋„ ์ค‘๊ทผ์ธ critically damped๊ฐ€ over damped ๋ณด๋‹ค ๋น ๋ฅด๊ฒŒ 0์— ์ˆ˜๋ ดํ•œ๋‹ค!! ๊ทธ๋ž˜ํ”„๋ฅผ ๋ณด๋ฉด, ์ดˆ๊ธฐ์—๋Š” critical damped์˜ ๊ฐ’์ด over damped ๋ณด๋‹ค ์ปค์ง€๋Š” ๊ฒฝ์šฐ๋„ ์กด์žฌํ•œ๋‹ค!! ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋” ๋น ๋ฅด๊ฒŒ ์ˆ˜๋ ดํ•˜๋Š” ๊ฒƒ!!

์ด๋Ÿฐ ํ˜„์ƒ์ด ์ƒ๊ธฐ๋Š” ์ด์œ ๋Š” over damped ์ƒํ™ฉ์—์„œ๋Š” ๋Œํ•‘์ด ๋„ˆ๋ฌด ๊ฐ•ํ•ด์„œ ์‹œ์Šคํ…œ ์†๋„์— ๋ธŒ๋ ˆ์ดํฌ๊ฐ€ ๊ฑธ๋ฆฐ ์ƒํƒœ์ฒ˜๋Ÿผ ๋Š๋ฆฌ๊ฑฐ ํ‰ํ˜•์ ์— ๋‹ค๊ฐ€๊ฐ€๊ธฐ ๋•Œ๋ฌธ์ด๋ผ๊ณ  ํ•œ๋‹ค. ๊ทธ๋ž˜์„œ critical damped ์ผ€์ด์Šค๊ฐ€ ํ‰ํ˜•์ ์— ๊ฐ€์žฅ ๋น ๋ฅด๊ฒŒ ์ ‘๊ทผํ•˜๊ธฐ ์œ„ํ•œ ์กฐ๊ฑด์ด๋ผ๊ณ  ํ•œ๋‹ค.

๋ฌธ๋“ ์‹ธ์ดํด๋กœ์ด๋“œ์˜ ์˜ˆ์ œ๊ฐ€ ์ƒ๊ฐ์ด ๋‚ฌ๋Š”๋ฐ, ๊ณต์ด ๊ฐ€์žฅ ๋น ๋ฅด๊ฒŒ ๊ฐ€๊ธฐ ์œ„ํ•ด์„  ์ง์„  ๊ฑฐ๋ฆฌ๋ณด๋‹ค๋Š” ์šด๋™๊ฑฐ๋ฆฌ๊ฐ€ ๋” ๊ธธ๋”๋ผ๋„ ์‹ธ์ดํด๋กœ์ด๋“œ ๊ฒฝ๋กœ๋กœ ๊ฐ€์•ผ ํ•œ๋‹ค๋Š” ์˜ˆ์‹œ๊ฐ€ ๋– ์˜ฌ๋ž๋‹ค. over vs. critical damped์˜ ๊ฒฝ์šฐ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋น ๋ฅด๊ฒŒ ํ‰ํ˜•์ ์— ๋„๋‹ฌํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ €ํ•ญ์ด ๋„ˆ๋ฌด ๊ฐ•ํ•ด๋„ ์ข‹์ง€ ์•Š์€ ๊ฒƒ ๊ฐ™๋‹ค. ๊ณผ์œ ๋ถˆ๊ธ‰(้Ž็ŒถไธๅŠ)์ด๋ผ๋Š” ๋ง์ด ์žˆ๋“ฏ์ด ๋„ˆ๋ฌด ์ง€๋‚˜์น˜๋ฉด ์ข‹์ง€ ์•Š์€ ๊ฒƒ ๊ฐ™๋‹ค.

Forced Harmonic Oscillation

์‚ฌ์‹ค ์š” ๋…€์„์ด ๋‚ด๊ฐ€ ํฌ์ŠคํŠธ๋ฅผ ์“ฐ๊ฒŒ ๋งˆ์Œ ๋จน๊ฒŒ ํ•œ ๋…€์„์ด๋‹คโ€ฆ;; ๋ฏธ๋ฐฉ์—์„œ ์–ธ์ œ๋‚˜ ๋จธ๋ฆฌ ์•„ํ”„๊ฒŒ ํ•˜๋Š” ๊ฒƒ์€ non-homogeneous ์ผ€์ด์Šค์ธ ๊ฒƒ ๊ฐ™๋‹ค.

\[x'' + bx' + kx = f(t)\]

์กฐํ™” ์ง„๋™์ž์— ์™ธ๋ถ€ํž˜ $f(t)$๊ฐ€ ์ž‘์šฉํ•˜๋Š” ๊ฒฝ์šฐ์ด๋‹ค. ๊ทธ๋™์•ˆ ์‚ดํŽด๋ณธ ์ผ€์ด์Šค๋“ค์€ ์‹œ์Šคํ…œ์ด $x$์™€ ๊ทธ๋“ค์˜ Derivative์—๋งŒ ์˜์กดํ•˜๋Š” ์‹œ์Šคํ…œ์ด์—ˆ๋Š”๋ฐ, ์—ฌ๊ธฐ์„œ๋ถ€ํ„ฐ๋Š” $f(t)$๋ผ๋Š” ์‹œ๊ฐ„ $t$์— ๋Œ€ํ•œ ํ•จ์ˆ˜๊ฐ€ ์‹œ์Šคํ…œ์— ์ถ”๊ฐ€๋œ๋‹ค. ๊ทธ๋ž˜์„œ โ€œNon-autonomousโ€ ์‹œ์Šคํ…œ์ด ๋œ๋‹ค. ๋™์‹œ์— ์šฐ๋ณ€์ด 0์ด ์•„๋‹ˆ๋ผ์„œ โ€œNon-homogeneousโ€์ด๊ธฐ๋„ ํ•˜๋‹ค.

์ด๋•Œ, $f(t)$๊ฐ€ ๊ทธ๋ƒฅ ์ž„์˜์˜ ํ•จ์ˆ˜๊ฐ€ ์•„๋‹ˆ๋ผ ์ฃผ๊ธฐ์„ฑ์„ ๊ฐ–๋Š” $f(t) = A \cos (\omega_f \, t)$๋ผ๊ณ  ํ•˜์ž.


non-homogeneous ODE๋ฅผ ํ’€ ๋•Œ๋Š”

  1. homo. ODE์—์„œ ์–ป์–ด์ง€๋Š” general solution $x_h(t)$๋ฅผ ๊ตฌํ•˜๊ณ 
  2. non-homo. ODE๋ฅผ ๋งŒ์กฑํ•˜๋Š” ์–ด๋–ค ๊ตฌ์ฒด์ ์ธ ํ•จ์ˆ˜ $x_p(t)$๋ฅผ ๊ตฌํ•œ ํ›„
  3. ๋‘˜์„ ์ผ์ฐจ ๊ฒฐํ•ฉ!!

ํ•ด์„œ ๊ตฌํ–ˆ๋‹ค. $x_h(t)$์•ผ ์‰ฝ๊ฒŒ ๊ตฌํ•  ์ˆ˜ ์žˆ๊ณ , $x_p(t)$๋ฅผ ๊ตฌํ•˜๋Š”๊ฒŒ ๋ฌธ์ œ๋‹ค.

Forced but Simple Harmonic Oscillation

$bxโ€™$ ํ…€๊นŒ์ง€ ๊ณ ๋ คํ•˜๊ธฐ์—” ๋จธ๋ฆฌ๊ฐ€ ์•„ํ”„๋‹ˆ๊นŒ ์ผ๋‹จ Simple์ธ๋ฐ ์™ธ๋ถ€ํž˜์ด ์ฃผ์–ด์ง„ ๊ฒฝ์šฐ๋ฅผ ๋จผ์ € ์‚ดํŽด๋ณด์ž.

\[x'' + kx = A \cos (\omega_f \, t)\]

[๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•]

particular solution์ด sinusoidal ์ด๋ฏ€๋กœ ์•„๋ž˜์™€ ๊ฐ™์€ particular solution ํ•จ์ˆ˜๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค.

\[x_p(t) = a \cos (\omega_f \, t) + b \sin (\omega_f \, t)\]

์š”๊ฑธ ์ขŒ๋ณ€์ธ $xโ€™โ€™ + \omega^2 x$์— ๋Œ€์ž…ํ•˜๋ฉดโ€ฆ

  • $xโ€™ = (-a \, \omega_f \, \sin (\omega_f \, t) + b \, \omega_f \, \cos (\omega_f \, t))$
  • $xโ€™โ€™= (-a \, \omega_f^2 \, \cos (\omega_f \, t) - b \, \omega_f^2 \, \cos (\omega_f \, t))$
\[x'' + \omega^2 x = (\omega_f^2 - \omega) \cdot (a \cos (\omega_f \, t) + b \sin (\omega_f \, t))\]

๊ทธ๋ฆฌ๊ณ  LHS์™€ RHS๊ฐ€ ๊ฐ™๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋ฉดโ€ฆ

  • $(\omega_f^2 - \omega)a = A$
  • $(\omega_f^2 - \omega)b = 0$

์ด ๋œ๋‹ค.

๋”ฐ๋ผ์„œ, particular solution $x_p(t)$๋Š” ์•„๋ž˜์™€ ๊ฐ™๊ณ ,

\[x_p(t) = \frac{A}{(\omega_f^2 - \omega)} \cos (\omega_f t)\]

์ด๋ฅผ General solution์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด

\[x(t) = C_1 \cos (\omega \, t) + C_2 \sin (\omega \, t) + \frac{A}{(\omega_f^2 - \omega)} \cos (\omega_f t)\]

Envelope Oscillation

์œ„์˜ forced but simple ์ผ€์ด์Šค์ธ๋ฐ, $C_1$, $C_2$๋ฅผ ์•„๋ž˜์™€ ๊ฐ™์ด ์„ค์ •ํ•œ ๊ฒฝ์šฐ์ด๋‹ค.

  • $C_1 = - \frac{A}{(\omega_f^2 - \omega)}$
  • $C_2 = 0$

์ด๋ ‡๊ฒŒ ํ•˜๋ฉด, general solution์€ ์•„๋ž˜์™€ ๊ฐ™์€๋ฐ

\[x(t) = \frac{A}{(\omega_f^2 - \omega)} \left( \cos (\omega_f \, t) - \cos (\omega \, t) \right)\]

์ฝ”์‹ธ์ธ ํ•จ์ˆ˜์˜ ๋ง์…ˆ์€ ์•„๋ž˜์˜ ๊ณต์‹์„ ๋”ฐ๋ฅด๋ฏ€๋กœโ€ฆ

\[\cos \alpha - \cos \beta = 2 \sin \left( \frac{\beta - \alpha}{2}\right) \sin \left( \frac{\beta + \alpha}{2}\right)\]

general solution์„ ์•„๋ž˜์™€ ๊ฐ™์€ $\sin$, $\cos$์˜ ๊ณฑ์…ˆ์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

\[x(t) = \frac{A}{(\omega_f^2 - \omega)} \cdot 2 \sin \left( \frac{\omega - \omega_f}{2}\right) \sin \left( \frac{\omega + \omega_f}{2}\right)\]

์ด๋ฅผ ํ‘œ๊ธฐ์˜ ํŽธ์˜๋ฅผ ์œ„ํ•ด $\delta = \frac{\omega - \omega_f}{2}$, $\bar{\omega} = \frac{\omega + \omega_f}{2}$๋ผ๊ณ  ํ‘œ๊ธฐํ•˜๊ฒ ๋‹ค. $\delta$๋Š” ์œ„์ƒ์ฐจ๋ฅผ ์˜๋ฏธํ•œ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค. $\bar{\omega}$๋Š” ํ‰๊ท  ์œ„์ƒ์ด๋ผ๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

๋งŒ์•ฝ, $\delta \lt \lt \bar{\omega}$๋ผ๊ณ  ํ•œ๋‹ค๋ฉด, ์•„๋ž˜์™€ ๊ฐ™์€ Envelope Oscillation์ด ๋ฐœ์ƒํ•œ๋‹ค. (โ€œBeatsโ€๋ผ๊ณ ๋„ ๋ถ€๋ฅธ๋‹ค.)

University of Houston, Math 3331

์ž‘์€ ์ฃผ๊ธฐ์˜ $\delta$๋Š” ๋Š๋ฆฌ๊ฒŒ ๋ณ€ํ•˜๋Š” ์ง„ํญ(envelop)๋ฅผ ๊ทธ๋ฆฌ๊ณ , ํฐ ์ฃผ๊ธฐ์˜ $\bar{\omega}$๋Š” ๋น ๋ฅธ ์ง„๋™์œผ๋กœ ๋Š๋ฆฐ ์ง„ํญ์˜ ์•ˆ์„ ์ฑ„์šด๋‹ค.

General Forced Harmonic Oscillation

\[x'' + bx' + kx = A \cos (\omega_f \, t)\]

๋‹ค์‹œ ์ด ๊ฒฝ์šฐ๋ฅผ ์‚ดํŽด๋ณด์ž. ์œ„์—์„œ Forced but Simple ์ผ€์ด์Šค์ฒ˜๋Ÿผ โ€œ๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•โ€์„ ์ด์šฉํ•ด particular solution์„ ๊ตฌํ•˜๋ฉด ๋œ๋‹ค. ๊ตฌํ•ด๋ณด๋ฉดโ€ฆ ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[x_p(t) = \frac{A}{\sqrt{(\omega^2 - \omega_f^2)^2 + 4 b^2 \omega_f^2}} \cos (\omega_f t - \phi)\]

๋˜๊ฒŒ ๋ณต์žกํ•˜๋‹ค;; ํ•˜์ง€๋งŒ ํ•ต์‹ฌ์€ particular solution์ด ์ฃผ๊ธฐ ํ•จ์ˆ˜๋กœ ์œ ๋„๋œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์ด๊ฑธ๋กœ general solution์„ ๋งŒ๋“ค์–ด์„œ ๊ทธ๋ž˜ํ”„๋ฅผ ์‚ดํŽด๋ณด๋ฉดโ€ฆ

http://www.physicsbootcamp.org

์‹œ์Šคํ…œ์ด ์ดˆ๊ธฐ์—๋Š” $x_h(t)$์˜ ์˜ํ–ฅ์œผ๋กœ ๋ถˆ์•ˆ์ •ํ•˜์ง€๋งŒ(๊ณผ๋„๊ธฐ; transient), $x_h(t) \rightarrow 0$์œผ๋กœ ์ˆ˜๋ ดํ•˜๋Š” ์„ฑ์งˆ ๋•Œ๋ฌธ์—, ์‹œ๊ฐ„์ด ์ง€๋‚˜๋ฉด particular solution ๊ทธ๋ž˜ํ”„๋งŒ ๋‚จ๊ฒŒ ๋œ๋‹ค.

References