2 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ํ•™๋ถ€ ์กธ์—…์‹œํ—˜์— ๋ฏธ๋ถ„๋ฐฉ์ •์‹์ด ์žˆ๋Š” ์ค„ ์•Œ๊ณ , ์‹œํ—˜ ์ค€๋น„๋„ ํ•  ๊ฒธ ๋ณตํ•™ํ•  ๋•Œ โ€œ์ƒ๋ฏธ๋ถ„๋ฐฉ์ •์‹โ€ ๊ณผ๋ชฉ์„ ์‹ ์ฒญํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‚˜์ค‘์— ์•Œ๊ณ ๋ณด๋‹ˆ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์€ ์กธ์—…์‹œํ—˜ ๊ณผ๋ชฉ์ด ์•„๋‹ˆ์—ˆ์Šต๋‹ˆ๋‹คโ€ฆ OTLโ€ฆ ๊ทธ๋ž˜๋„ ์ด์™• ์‹œ์ž‘ํ•œ ๊ฒƒ ํฌ๊ธฐ๋ž€ ์—†์Šต๋‹ˆ๋‹ค!! ๐Ÿ’ช ์œผ๋ž์ฐจ!! ์ƒ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

[Bifurcations]

  • Saddle-Node Bifurcation ๐Ÿ‘‹
  • Pitchfork Bifurcation
  • Hopf Bifurcation

Saddle-Node Bifurcation

Linear System์—์„œ Saddle Node์˜ Phase Portrait์€ ์š”๋ ‡๊ฒŒ ์ƒ๊ฒผ์—ˆ๋‹ค.

https://homepages.bluffton.edu/

์šฐ๋ฆฌ๋Š” ์ด๊ฑธ Non-linear System์—์„œ๋„ Saddle-Node Bifurcation์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜๊ณ ์ž ํ•œ๋‹ค.

์˜ˆ์ œ๋ฅผ ๋จผ์ € ์‚ดํŽด๋ณด์ž.

1D Example

\[x' = a + x^2\]

์ด๋•Œ, ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ ค๋ณด๋ฉด,

๋ณด๋ฉด, parameter $a$ ๊ฐ’์— ๋”ฐ๋ผ์„œ, fixed point๊ฐ€ 2๊ฐœ -> 1๊ฐœ -> 0๊ฐœ ์ˆœ์„œ๋กœ ๋‹ฌ๋ผ์ง‘๋‹ˆ๋‹ค.

2D Example

\[\begin{aligned} x' &= a + x^2 \\ y' &= -y \end{aligned}\]

$x$์— ๋Œ€ํ•œ ๋ถ€๋ถ„๊ณผ $y$์— ๋Œ€ํ•œ ๋ถ€๋ถ„์„ ๋‚˜๋ˆ ์„œ ์ƒ๊ฐํ•˜๋ฉด Phase Portrait์„ ๊ทธ๋ฆฌ๊ธฐ ์‰ฌ์šด ๊ฒƒ ๊ฐ™๋‹ค.

Definition

Saddle Node Bifurcation์— ๋Œ€ํ•ด ์—„๋ฐ€ ์ •์˜ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

There is an interval about bifurcation value $a_0$ and another interval $I$ on x-axis s.t.

$xโ€™ = f_a(x)$ has

  1. Two fixed points in $I$ if $a < a_0$ (or $a > a_0$)
  2. One fixed point in $I$ if $a = a_0$
  3. No fixed point in $I$ if $a > a_0$ (or $a < a_0$)

Saddle-Node Bifurcation Theorem

์ฃผ์–ด์ง„ System์ด Saddle-node bifurcation์„ ๊ฐ€์ง„๋‹ค๋ฉด ๊ณตํ†ต์ ์œผ๋กœ ๋งŒ์กฑํ•˜๋Š” ์„ฑ์งˆ์ด ์žˆ๋‹ค. ์ด๋ฅผ ๊ธฐ์ˆ ํ•œ ๊ฒƒ์ด ์•„๋ž˜์˜ ์ •๋ฆฌ๋‹ค.

$xโ€™ = f_a(x)$ has a saddle-node bifurcation at $a = a_0$ when

  1. $f_{a_0} (x_0) = 0$
  2. $f_{a_0}โ€™ (x_0) = 0$
  3. $f_{a_0}โ€™โ€™ (x_0) \ne 0$
  4. $\frac{\partial f_{a_0}}{\partial a} \ne 0$