๋™์ฐจ ์‹œ์Šคํ…œ์„ ํ’€์–ด์„œ ๋„๊ณต๊ฐ„์„ ์ฐพ๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด. ๊ทธ๋ฆฌ๊ณ  ๋„๊ณต๊ฐ„์˜ ์ฐจ์›์ธ โ€œnullityโ€์— ๋Œ€ํ•ด. Unique Solution๊ณผ Trivial Solution์— ๋Œ€ํ•ด์„œ๋„!

5 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ํ•™๋ถ€ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด 2024๋…„ 10์›”๋ถ€ํ„ฐ ์„ ํ˜•๋Œ€์ˆ˜๋ฅผ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. (ํ˜„์žฌ์ง„ํ–‰ํ˜•โ€ฆ ๐Ÿƒโ€โ™‚๏ธโ€โžก๏ธ) ์„ ํ˜•๋Œ€์ˆ˜์— ๋Œ€ํ•œ ์ „์ฒด ํฌ์ŠคํŠธ ๋ชฉ๋ก์€ โ€œLinear Algebraโ€œ์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค!

๋“ค์–ด๊ฐ€๋ฉฐ

๊ธฐ์ดˆ ๋Œ€์ˆ˜๊ฐ€ ์ผ์ฐจ ๋ฐฉ์ •์‹ $ax + b = 0$์ด ๋˜๋Š” $x$๋ฅผ ์ฐพ๊ณ  ์‹ถ์–ด ํ•˜๋“ฏ์ด, ์„ ํ˜• ๋Œ€์ˆ˜์—์„œ๋Š” ํ–‰๋ ฌ $A$๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ, $A \mathbf{x} = 0$์„ ๋งŒ์กฑํ•˜๋Š” ๋ฒกํ„ฐ $\mathbf{x}$๋ฅผ ์ฐพ๊ณ  ์‹ถ์–ด ํ•ฉ๋‹ˆ๋‹ค.

์ด๋•Œ, $A \mathbf{x} = 0$๋ฅผ ๋งŒ์กฑํ•˜๋Š” ๋ฒกํ„ฐ๋Š” ์—ฌ๋Ÿฌ ๊ฐœ ์กด์žฌํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ(์•„๋‹˜ ์•„์˜ˆ ์—†์„ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค!), ์ด๋“ค์„ ๋ชจ์•„์„œ ์ •์˜ํ•œ ์ง‘ํ•ฉ(๊ณต๊ฐ„)์ด โ€œNull Spaceโ€ ์ž…๋‹ˆ๋‹ค.

\[\text{Null Space} = \left\{ \mathbf{x} \in \mathbb{R}^{m} : A \mathbf{x} = \mathbf{0} \right\}\]

Null Space๋Š” ๋ฒกํ„ฐ ๊ณต๊ฐ„ ์ž…๋‹ˆ๋‹ค! ๊ทธ๋ฆฌ๊ณ  ์ด ๊ณต๊ฐ„์˜ ์ฐจ์›์„ โ€œnullityโ€œ๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค! ์ด ์šฉ์–ด๋ฅผ ์ž์ฃผ ๋ณผ์ผ์€ ์—†์ง€๋งŒ, ์ดํ›„์— ์„ ํ˜• ๋Œ€์ˆ˜์˜ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์ •๋ฆฌ์ธ โ€œRank-Nullity Theoremโ€œ์— ๋Œ€ํ•ด ๋‹ค๋ฃฐ ๋•Œ, ๋‹ค์‹œ ๋ด…๋‹ˆ๋‹ค ๐Ÿ™‚

Case Study

Unique Solution

๊ฐ€์žฅ ์‰ฌ์šธ ๊ฒƒ ๊ฐ™์€ Identity Matrix์˜ ๊ฒฝ์šฐ๋ถ€ํ„ฐ ์‚ดํŽด๋ด…์‹œ๋‹ค!

\[A = \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix}\right]\] \[A \mathbf{x} = \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix}\right] \left[\begin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix}\right] = \mathbf{0}\]

์ด๊ฒƒ์„ ๋งŒ์กฑํ•˜๋Š” $\mathbf{x}$๋Š” $x_1 = x_2 = x_3 = 0$์ธ ๊ฒฝ์šฐ ๋ฐ–์— ์—†์Šต๋‹ˆ๋‹ค! ๊ทธ๋ฆฌ๊ณ , ๋„๊ณต๊ฐ„์€ ์•„๋ž˜์™€ ๊ฐ™์ด ์ •์˜ ๋ฉ๋‹ˆ๋‹ค.

\[\text{Null Space} = \left\{ \mathbf{0} \right\}\]

์ด๋•Œ์˜ ๋„๊ณต๊ฐ„์˜ ์ฐจ์›์ธ nullity๋Š” โ€œ0โ€์ด ๋ฉ๋‹ˆ๋‹ค. (1์ด ์•„๋‹™๋‹ˆ๋‹ค!) ์ฐจ์›์€ ์ž์œ ๋„(dof) ๊ฐ™์€ ๊ฐœ๋…์ž…๋‹ˆ๋‹ค. Unique Solution์ด ์žˆ๋‹ค๋ฉด, ์†”๋ฃจ์…˜์ด ๊ณ ์ •๋œ ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์— ์ž์œ ๋„๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ nullity๋Š” 0์ด ๋ฉ๋‹ˆ๋‹ค.

One freedom

์ด๋ฒˆ์—๋Š” ๋งˆ์ง€๋ง‰ ํ–‰์„ ์ „๋ถ€ 0์œผ๋กœ ๋ฐ”๊พธ๊ณ  ๋„๊ณต๊ฐ„์„ ๊ตฌํ•ด๋ด…์‹œ๋‹ค!

\[A = \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & {\color{red} 0} \end{matrix}\right]\] \[A \mathbf{x} = \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{matrix}\right] \left[\begin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix}\right] = \mathbf{0}\]

์ด๋•Œ๋Š” $x_1 = x_2 = 0$์ด ๋˜๊ณ , $x_3$์˜ ๊ฐ’์€ ๊ฒฐ์ • ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ๋„๊ณต๊ฐ„์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\[\text{Null Space} = \left\{ \; [0, 0, x_3]^T \quad \text{where} \quad x_3 \in \mathbb{R} \; \right\}\]

์ด๋•Œ, ๋„๊ณต๊ฐ„์˜ ์ฐจ์›์ธ nullity๋Š” โ€œ1โ€์ด ๋ฉ๋‹ˆ๋‹ค! ์ด๊ฒƒ์€ $x_3$๊ฐ€ ์–ด๋–ค ๊ฐ’์„ ๊ฐ€์ ธ๋„ ํ•ด๊ฐ€ ์„ฑ๋ฆฝํ•˜๊ธฐ ๋•Œ๋ฌธ ์ž…๋‹ˆ๋‹ค!

No Solution (Vacant)

์ฐธ๊ณ ๋กœ $A \mathbf{x} = \mathbf{0}$์ธ ๊ฒฝ์šฐ, ํ•ญ์ƒ Trivial Solution์ธ $\mathbf{x} = \mathbf{0}$์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฐ ๊ฒฝ์šฐ๋ฅผ โ€œ๋™์ฐจ(homogeneous) ๋ฐฉ์ •์‹โ€๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. (์ด๋•Œ, Unique Solution๊ณผ Trivial Solution์„ ๊ตฌ๋ถ„ํ•ด์„œ ์‚ฌ์šฉํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค!)

๋‹จ, $A \mathbf{x} = \mathbf{b}$์ธ ๋น„๋™์ฐจ ๋ฐฉ์ •์‹์˜ ์ƒํ™ฉ์—์„œ๋Š” $\mathbf{x}$์— ๋Œ€ํ•œ ์†”๋ฃจ์…˜์ด ์กด์žฌํ•˜์ง€ ์•Š์„ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค!

Rectangular Form

์ง€๊ธˆ๊นŒ์ง€๋Š” ํ–‰๋ ฌ $A$๊ฐ€ $n\times n$์œผ๋กœ ์ •์‚ฌ๊ฐ ํ–‰๋ ฌ์ธ ๊ฒฝ์šฐ๋ฅผ ์‚ดํŽด๋ณด์•˜์Šต๋‹ˆ๋‹ค. ๋งŒ์•ฝ ํ–‰๋ ฌ $A$๊ฐ€ $n \times m$์ธ ์ง์‚ฌ๊ฐ ํ–‰๋ ฌ์ด๋ผ๋ฉด ์–ด๋–ป๊ฒŒ ๋ ๊นŒ์š”?

\[A = \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{matrix}\right] \in \mathbb{R}^{2 \times 3}\] \[A \mathbf{x} = \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{matrix}\right] \left[\begin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix}\right] = \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] = \mathbf{0}\]

์ด๋•Œ๋„ $x_1 = x_2 = 0$์ด ๋˜์ง€๋งŒ, $x_3$์˜ ๊ฐ’์€ ๊ฒฐ์ • ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. $x_3$๋Š” ์†”๋ฃจ์…˜์— ์•„๋ฌด ์˜ํ–ฅ์„ ์ฃผ์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ์–ด๋–ค ๊ฐ’์„ ๊ฐ€์ ธ๋„ ๊ดœ์ฐฎ์Šต๋‹ˆ๋‹ค! ๋”ฐ๋ผ์„œ ๋„๊ณต๊ฐ„์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\[\text{Null Space} = \left\{ \; [0, 0, x_3]^T \quad \text{where} \quad x_3 \in \mathbb{R} \; \right\}\]

nullity๋Š” 1์ด ๋ฉ๋‹ˆ๋‹ค.

Bound of nullity

nullity ๊ฐ’์€ ํ–‰๋ ฌ $A$๊ฐ€ ์–ด๋–ค ๊ฐ’์„ ๊ฐ–๋Š”์ง€์— ๋”ฐ๋ผ ๋ฐ”๋€๋‹ˆ๋‹ค.

ํ–‰๋ ฌ $A$์˜ ์—ด๋ฒกํ„ฐ๊ฐ€ ๋ชจ๋‘ ์ผ์ฐจ ๋…๋ฆฝ์ด๋ผ๋ฉด, Trivial Solution๋งŒ ๋‚จ์•„์„œ nullity๊ฐ€ 0์ด ๋˜์—ˆ๊ณ ,

๋ฐ˜๋Œ€๋กœ ํ–‰๋ ฌ $A$์˜ ์—ด๋ฒกํ„ฐ๊ฐ€ ๋ชจ๋‘ ์ข…์†์ด๋ผ๋ฉด, ๊ทน๋‹จ์ ์œผ๋กœ๋Š” $A = O$์ธ ์˜ํ–‰๋ ฌ์ด๋ผ๋ฉด, ๊ฐ€์žฅ ํฐ ์ž์œ ๋„๋ฅผ ๊ฐ–๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ์ด๋•Œ๋Š” $\mathbf{x} = \mathbb{R}^m$๊ฐ€ ๋˜๊ธฐ์—, nullity๋Š” $m$์ด ๋ฉ๋‹ˆ๋‹ค.

๊ฒฐ๊ตญ, ์ •๋ฆฌํ•˜๋ฉด nullity ๊ฐ’์€ ์•„๋ž˜์˜ ๋ฒ”์œ„๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค.

\[0 \le \text{nullity} \le m\]

๋งบ์Œ๋ง

๋„๊ณต๊ฐ„์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๋ฉด์„œ, $A\mathbf{x} = \mathbf{0}$์ธ ๋™์ฐจ ๋ฐฉ์ •์‹์„ ํ’€์—ˆ์Šต๋‹ˆ๋‹ค. ๋™์ฐจ ์ƒํ™ฉ์„ ๋ดค์œผ๋‹ˆ, ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ โ€œ๋น„๋™์ฐจ(non-homogeneous)โ€ ๊ฒฝ์šฐ๋ฅผ ์‚ดํŽด๋ด์•ผ ํ•ฉ๋‹ˆ๋‹ค ๐Ÿ˜›

โžก๏ธ Solve Non-homogeneous System