์˜ˆ์‚ฐ ์ง‘ํ•ฉ๊ณผ ์ˆ˜์š” ํ•จ์ˆ˜๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ, ๊ฐ€์žฅ ํฐ ํšจ์šฉ์„ ๋‚ด๋Š” ๊ฒฐ๊ณผ๋ฅผ ์ฐพ๋Š” Consumerโ€™s Problem์— ๋Œ€ํ•ด.

5 minute read

์กธ์—…์„ ์œ„ํ•ด ๋งˆ์ง€๋ง‰ ํ•™๊ธฐ์— โ€œ๋ฏธ์‹œ๊ฒฝ์ œํ•™โ€ ์ˆ˜์—…์„ ๋“ฃ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๊ฒฝ์ œํ•™์›๋ก  ์ˆ˜์—…์„ ์žฌ๋ฐŒ๊ฒŒ ๋“ค์–ด์„œ ๊ฒฝ์ œ ์ชฝ์ด๋ž‘ ๊ถํ•ฉ์ด ์ข‹์€ ์ค„ ์•Œ๊ณ  ์‹ ์ฒญ ํ–ˆ๋Š”๋ฐ, ์›ฌ๊ฑธโ€ฆ ์ด ๊ณผ๋ชฉ์€ ์‚ฌ์‹ค์ƒ ์ˆ˜ํ•™๊ณผ ๊ณผ๋ชฉ ์ด์—ˆ์Šต๋‹ˆ๋‹ค.. ใ…‹ใ…‹ ๊ทธ๋ž˜๋„ ์ˆ˜ํ•™๊ณผ ๋ณต์ˆ˜์ „๊ณต๋„ ํ•˜๊ณ  ์žˆ์œผ๋‹ˆ, ์ด ์ˆ˜์—…๋„ ํž˜๋‚ด์„œ ์ž˜ ๋“ค์–ด๋ด…์‹œ๋‹ค! ์ „์ฒด ํฌ์ŠคํŠธ๋Š” โ€œ๋ฏธ์‹œ๊ฒฝ์ œํ•™โ€ ์นดํ…Œ๊ณ ๋ฆฌ์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Consumerโ€™s Problem

ํ•ฉ๋ฆฌ์ ์ธ(rational) ์†Œ๋น„์ž๋Š” ์ž์‹ ์˜ ์„ ํ˜ธ๊ฐ€ ๊ณ ์ •(fixed) ๋˜์–ด ์žˆ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์ฆ‰, ์–ด๋–ค ๋ฒˆ๋“ค์ด ๋” ์ข‹๊ณ  ๋” ์ข‹์€์ง€๋ฅผ ํ•ญ์ƒ ์ผ๊ด€์„ฑ ์žˆ๊ฒŒ ํŒ๋‹จํ•˜๊ณ  ํ–‰๋™ ํ•ฉ๋‹ˆ๋‹ค.

์ด ์†Œ๋น„์ž๋Š” ์˜ˆ์‚ฐ์˜ ์ œ์•ฝ ์•„๋ž˜์—์„œ ์ž์‹ ์˜ ์„ ํ˜ธ์— ๋”ฐ๋ผ ๊ฐ€์žฅ ์ข‹์€ ๋ฒˆ๋“ค์„ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค. ์ด๋•Œ, ๊ฐ€์žฅ ์ข‹์€ ๋ฒˆ๋“ค(best bundle)์€ โ€œ๊ฐ€์žฅ ๋†’์€ ํšจ์šฉ์„ ์ฃผ๋Š” ๋ฒˆ๋“คโ€œ์„ ๋งํ•ฉ๋‹ˆ๋‹ค! ๊ทธ๋ฆฌ๊ณ  ์ด ๋ฒ ์ŠคํŠธ ๋ฒˆ๋“ค์„ ๊ณ ๋ฅด๋Š” ๋ฌธ์ œ๋ฅผ โ€œConsumerโ€™s Problemโ€œ๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.

\[\underset{(x_1, x_2) \in B}{\text{argmax}} \; u(x_1, x_2)\]

Solution Existence

์†Œ๋น„์ž ๋ฌธ์ œ์˜ ํ•ด๊ฐ€ ์กด์žฌํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์•„๋ž˜์˜ ์„ฑ์งˆ๋“ค์ด ๋งŒ์กฑํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ฐ ์„ฑ์งˆ์— ๋Œ€ํ•œ ์ฆ๋ช…๋„ ํ•„์š”ํ•˜์ง€๋งŒโ€ฆ ์ผ๋‹จ ์Šคํ‚ต ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค!

Continuous

If the preference relation is โ€œcontinuousโ€,
then the consumerโ€™s problem has a solution

์„ ํ˜ธ๊ฐ€ ์—ฐ์†์„ฑ์„ ๊ฐ€์ง„๋‹ค๋ฉด, ์ฆ‰ ๋ฏธ์†Œ ๋ณ€ํ™”์— ๋Œ€ํ•ด ์†Œ๋น„์ž์˜ ์„ ํ˜ธ๊ฐ€ ๊ธ‰๊ฒฉํžˆ ๋ฐ”๋€Œ๋Š”๊ฒŒ ์•„๋‹ˆ๋ผ๋ฉด, ์˜ˆ์‚ฐ ์ง‘ํ•ฉ ์•ˆ์—์„œ ์ตœ์ ์˜ ์†Œ๋น„ ๋ฒˆ๋“ค์— ๋Œ€ํ•œ Solution์ด ๋ฐ˜๋“œ์‹œ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ์ด๊ฒƒ์€ ํ•ด์˜ ์กด์žฌ์„ฑ์„ ๋ณด์žฅํ•˜๋Š” ์กฐ๊ฑด ์ž…๋‹ˆ๋‹ค.

Strictly Convex

If the preference relation is โ€œstrictly convexโ€,
then the consumerโ€™s problem has at most one solution.

\[\begin{gather*} \lambda a + (1 - \lambda) b \, {\color{red} \succ} \, a \\ \text{and} \\ \lambda a + (1 - \lambda) b \, {\color{red} \succ} \, b \end{gather*}\]

๋ฒˆ๋“ค ์„ ํ˜ธ๊ฐ€ โ€œ์—„๊ฒฉํ•˜๊ฒŒ ๋ณผ๋กโ€ํ•˜๋‹ค๋Š” ์„ฑ์งˆ์€ ์†Œ๋น„์ž๊ฐ€ ์„ ํ˜• ๊ฒฐํ•ฉ์œผ๋กœ ๋งŒ๋“  โ€œํ˜ผํ•ฉ๋œ ๋ฒˆ๋“คโ€์„ ๋” ์„ ํ˜ธํ•œ๋‹ค๋Š” ์˜๋ฏธ ์ž…๋‹ˆ๋‹ค.

๋ฒˆ๋“ค ์„ ํ˜ธ๊ฐ€ convexity ์„ฑ์งˆ์„ ๊ฐ€์ง„๋‹ค๋ฉด, Consumerโ€™s Problem์˜ ํ•ด๊ฐ€ ์œ ์ผํ•˜๊ฒŒ ์กด์žฌํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์žฅ ํ•ฉ๋‹ˆ๋‹ค.

Monotone

If the preference relation is โ€œmonotoneโ€,
then any solution of the consumerโ€™s problem is on the budget line.

๋ฒˆ๋“ค ์„ ํ˜ธ๊ฐ€ โ€œ๋‹จ์กฐ์ โ€์ด๋ผ๋Š” ๊ฑด, ๋” ๋งŽ์ด ์†Œ๋น„ํ• ์ˆ˜๋ก ์ข‹๋‹ค๋Š” ๊ฒƒ์„ ๋งํ•ฉ๋‹ˆ๋‹ค. ๋‹ค๋ฅด๊ฒŒ ํ‘œํ˜„ํ•˜๋ฉด ์žฌํ™”๊ฐ€ โ€œ์ •์ƒ์žฌ(normal goods)โ€๋ผ๋Š” ๊ฒƒ์„ ๋งํ•ฉ๋‹ˆ๋‹ค.

์ด๋•Œ๋Š” ์†Œ๋น„์ž๊ฐ€ ๋ชจ๋“  ์˜ˆ์‚ฐ์„ ๋‹ค ์จ๋ฒ„๋ฆฌ๋Š” ๊ฒƒ์ด ํšจ์šฉ์„ ๊ฐ€์žฅ ๋†’์ด๋Š” ๋ฐฉ๋ฒ•์ด ๋ฉ๋‹ˆ๋‹ค! ๊ทธ๋ž˜์„œ ์ตœ์ ์˜ ์†Œ๋น„๋Š” โ€œBudget Line ์œ„์—โ€ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.

Examples

Complementary Goods

๋‘ ์žฌํ™”๊ฐ€ โ€œ๋ณด์™„์žฌโ€๋ผ๋ฉด, ๋‘ ์žฌํ™”๊ฐ€ ๊ฐ™์€ ์ˆ˜๋Ÿ‰ ๋งŒํผ ์žˆ์–ด์•ผ ๊ฐ€์น˜๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ, ํšจ์šฉ ํ•จ์ˆ˜๋Š” $u(x) = \min(x_1, x_2)$๋กœ ํ‘œํ˜„ ๋ฉ๋‹ˆ๋‹ค.

๊ทธ๋ฆฌ๊ณ  ๋ณด์™„์žฌ์—์„œ์˜ ์„ ํ˜ธ๋Š” โ€œ๋‹จ์กฐ์„ฑ(monotone)โ€์„ ๊ฐ–์Šต๋‹ˆ๋‹ค. ๋” ๋งŽ์ด ์†Œ๋น„ํ•  ์ˆ˜๋ก ์ด๋“์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, CP์˜ ํ•ด๋Š” ๋ฒ„์ง“ ๋ผ์ธ ์œ„์— ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.

\[p_1 x_1 + p_2 x_2 = w\]

๊ทธ๋ฆฌ๊ณ , ๋‘ ์žฌํ™”๊ฐ€ ์ •ํ™•ํžˆ ๊ฐ™์€ ์ˆ˜๋Ÿ‰๋งŒํผ ์กด์žฌํ•ด์•ผ ํ•˜๋ฏ€๋กœ, $x_1 = x_2$๊ฐ€ ์„ฑ๋ฆฝํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ,

\[p_1 x^{\ast} + p_2 x^{\ast} = w\]

๋”ฐ๋ผ์„œ, ์†”๋ฃจ์…˜์€

\[x^{\ast} = \left(\frac{w}{p_1 + p_2}, \frac{w}{p_1 + p_2}\right)\]


์ˆ˜์—… ์ž๋ฃŒ์—์„œ๋Š” ๋ณด์™„์žฌ ์ƒํ™ฉ์ด ์œ ์ผํ•ด๋ฅด ๊ฐ–์ง€๋งŒ, convex ์„ฑ์งˆ๋งŒ ๋งŒ์กฑํ•˜์ง€, strictly convex ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. (๋ญ”๊ฐ€ convex ์กฐ๊ฑด๋งŒ ๋งŒ์กฑํ•ด๋„ ์œ ์ผํ•ด๊ฐ€ ์กด์žฌํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. strictly convex๋ผ๋ฉด, ๋ฐ˜๋“œ์‹œ ์œ ์ผํ•ด์ด๊ณ ์š”!)

Substitutable Goods

์ด ์†Œ๋น„์ž๋Š” ๋‘ ์žฌํ™”์˜ ์ดํ•ฉ์ด ์ตœ๋Œ€๊ฐ€ ๋˜๋Š” ๊ฒƒ์„ ์ตœ๊ณ ๋กœ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์ด ์†Œ๋น„์ž์˜ ํšจ์šฉ ํ•จ์ˆ˜๋Š” $u(x) = x_1 + x_2$๋กœ ํ‘œํ˜„ ๋ฉ๋‹ˆ๋‹ค.

  • $p_1 < p_2$
    • ์†Œ๋น„์ž๋Š” ์ˆ˜๋Ÿ‰์„ ๊ทน๋Œ€ํ™” ํ•˜๊ธฐ ์œ„ํ•ด ์žฌํ™”1๋งŒ ๊ตฌ๋งคํ•ฉ๋‹ˆ๋‹ค.
    • $x^{\ast} = (w/p_1, 0)$
  • $p_1 > p_2$
    • ์ด๋ฒˆ์—๋Š” ์žฌํ™”2๋งŒ ๊ตฌ๋งคํ•ฉ๋‹ˆ๋‹ค.
      • $x^{\ast} = (0, w/p_2)$
  • $p_1 = p_2$
    • ๋ฒ„์ง“ ๋ผ์ธ ์œ„์— ์žˆ๋‹ค๋ฉด, ์žฌํ™”1๊ณผ ์žฌํ™”2๋ฅผ ์–ด๋–ค ์กฐํ•ฉ์œผ๋กœ ๊ตฌ๋งคํ•ด๋„ ์ƒ๊ด€ ์—†์Šต๋‹ˆ๋‹ค.
    • ์™œ๋ƒํ•˜๋ฉด ๊ฐ€๊ฒฉ์ด ๊ฐ™๊ธฐ ๋•Œ๋ฌธ์—, $x_1 + x_2 = w/p$๋กœ ๊ณ ์ • ๋˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค!
    • ๋ฒ„์ง“ ๋ผ์ธ ์œ„์˜ ๋ชจ๋“  ์ ์ด ์†”๋ฃจ์…˜์ด ๋ฉ๋‹ˆ๋‹ค.
    • ๋‹ค์ค‘ํ•ด๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๋Œ€ํ‘œ์ ์ธ ์˜ˆ์‹œ ์ž…๋‹ˆ๋‹ค!

๋งบ์Œ๋ง

์ €๋ฒˆ ํฌ์ŠคํŠธ๋ถ€ํ„ฐ ์ƒˆ๋กœ์šด ์šฉ์–ด๊ฐ€ ์ •๋ง ๋งŽ์ด ๋‚˜์˜ค๋Š” ํฌ์ŠคํŠธ ์˜€์ง€๋งŒ, ๊ทธ๋ ‡๊ฒŒ ์–ด๋ ค์šด ๊ฒƒ๋“ค์€ ์•„๋‹ˆ์—ˆ์Šต๋‹ˆ๋‹ค.

  • Budget Set $B$
  • Demand Function $x(B)$
  • Consumerโ€™s Problem

์ด๋ฒˆ ํฌ์ŠคํŠธ์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ฒƒ์€ ๋งˆ์ง€๋ง‰์— ์žˆ๋˜ โ€œConsumerโ€™s Problemโ€ ์ž…๋‹ˆ๋‹ค! ์•ž์œผ๋กœ ์ด์–ด์ง€๋Š” ๋‚ด์šฉ์€ ๊ณ„์†ํ•ด์„œ ์†Œ๋น„์ž์˜ ์ตœ์  ์„ ํƒ์„ ์–ด๋–ป๊ฒŒ ์ฐพ์„ ๊ฒƒ์ธ์ง€, ์–ธ์ œ ์†Œ๋น„์ž์˜ ์ตœ์  ์„ ํƒ์ด ๋˜๋Š”์ง€๋ฅผ ์‚ดํŽด๋ด…๋‹ˆ๋‹ค!