μ„ ν˜•/λΉ„μ„ ν˜• λ³€ν™˜μ„ 톡해 μƒˆλ‘œμš΄ ν™•λ₯  λ³€μˆ˜λ₯Ό λ§Œλ“œλŠ” 방법에 λŒ€ν•΄. Jacobian으둜 ν™•λ₯  밀도 ν•¨μˆ˜ λ³΄μ •ν•˜κΈ°

7 minute read

2025λ…„ λ§ˆμ§€λ§‰ ν•™κΈ° μˆ˜μ—…μΈ β€œν™•λ₯ κ°œλ‘ (MATH431)” μˆ˜μ—…μ—μ„œ 배운 것과 κ³΅λΆ€ν•œ 것을 μ •λ¦¬ν•œ ν¬μŠ€νŠΈμž…λ‹ˆλ‹€. 전체 ν¬μŠ€νŠΈλŠ” Introduction to Probability Theoryμ—μ„œ ν™•μΈν•˜μ‹€ 수 μžˆμŠ΅λ‹ˆλ‹€ 🎲

λ“€μ–΄κ°€λ©°

2xx 확톡과 4xx의 ν™•λ₯ κ°œλ‘ μ„ λ“€μœΌλ©΄μ„œ λ§Žμ€ 이산 ν™•λ₯ λ³€μˆ˜μ™€ 연속 ν™•λ₯ λ³€μˆ˜λ₯Ό μ‚΄νŽ΄λ³΄μ•˜μŠ΅λ‹ˆλ‹€.

그런데, μ„Έμƒμ—λŠ” 이것보닀 더 많고 λ‹€μ–‘ν•œ ν™•λ₯ λ³€μˆ˜λ“€κ³Ό 상황이 μ‘΄μž¬ν•˜κ³ , 이듀을 μƒμ„±ν•˜κ±°λ‚˜ λͺ¨λΈλ§ν•  λ•Œ, ν™•λ₯ λ³€μˆ˜μ˜ β€œλ³€ν™˜(transform)β€œμ„ ν•˜κ²Œ λ©λ‹ˆλ‹€.

이번 ν¬μŠ€νŠΈμ—μ„œλŠ” κ·Έ 과정을 μ—„λ°€νžˆ μ‚΄νŽ΄λ³Ό μ˜ˆμ •μž…λ‹ˆλ‹€!

Linear Transform

$X \sim \text{Unif}(0, 1)$λ₯Ό λ”°λ₯΄λŠ” ν™•λ₯  λ³€μˆ˜λ₯Ό $Y = 2X$둜 λ³€ν™˜ν•΄λ΄…μ‹œλ‹€.

이 ν™•λ₯ λ³€μˆ˜μ˜ PDFλŠ” $[0, 1]$ μ‚¬μ΄μ—μ„œ $f_X(x) = 1$ μ˜€μŠ΅λ‹ˆλ‹€.

이것을 2배둜 늘린 $Y = 2X$λŠ” κ·Έ λ²”μœ„λ‘œ 2λ°°κ°€ λ©λ‹ˆλ‹€. $Y \in [0, 2]$.

이제 μ΄κ²ƒμ˜ CDFλ₯Ό ꡬ해보면,

\[F_Y(y) = P(Y \le y) = P(2X \le y) = P(X \le y/2) = F_X(y/2)\]

$X$의 CDFλŠ” $F_X(x) = x$ μ˜€μœΌλ―€λ‘œ, $Y$의 CDFλŠ”

\[F_Y(y) = y / 2 \quad (0 \le y \le 2)\]

이제 CDFλ₯Ό λ―ΈλΆ„ν•΄μ„œ PDFλ₯Ό κ΅¬ν•˜λ©΄,

\[f_Y(y) = 1/2 \quad (0 \le y \le 2)\]

Non-linear Transform

μ΄λ²ˆμ—λŠ” $X \sim \text{Unif}(0, 1)$λ₯Ό λ”°λ₯΄λŠ” ν™•λ₯  λ³€μˆ˜λ₯Ό $Y = X^2$둜 λ³€ν™˜ν•΄λ΄…μ‹œλ‹€.

μƒˆλ‘œμš΄ ν™•λ₯ λ³€μˆ˜ $Y$의 λ²”μœ„λŠ” κ·ΈλŒ€λ‘œ $[0, 1]$μž…λ‹ˆλ‹€. μ΄κ²ƒμ˜ CDFλ₯Ό λ°”λ‘œ ꡬ해보면,

\[\begin{aligned} F_Y(y) &= P(Y \le y) \\ &= P(X^2 \le y) \\ &= P(\vert X \vert \le \sqrt{y}) \\ &= P(X \le \sqrt{y}) + P(-X \le \sqrt{y}) \end{aligned}\]

μ΄λ•Œ, $X \sim \text{Unif}(0, 1)$μ΄λ―€λ‘œ, $X > 0$인 경우만 κ³ λ €ν•˜λ©΄ λ©λ‹ˆλ‹€! λ”°λΌμ„œ,

\[F_Y(y) = P(X \le \sqrt{y}) = \sqrt{y}\]

이제 CDFλ₯Ό λ―ΈλΆ„ν•΄μ„œ PDFλ₯Ό κ΅¬ν•˜λ©΄,

\[f_Y(y) = \frac{1}{2\sqrt{y}} \quad (0 < y \le 1)\]

μ„ ν˜• λ³€ν™˜μ€ Uniform 뢄포λ₯Ό λ‹€μ‹œ Uniform λΆ„ν¬λ‘œ λ§Œλ“€μ—ˆμŠ΅λ‹ˆλ‹€. λ°˜λ©΄μ—, λΉ„μ„ ν˜• λ³€ν™˜μ€ Uniform 뢄포λ₯Ό μ™„μ „νžˆ λ‹€λ₯Έ ν˜•νƒœμ˜ λΆ„ν¬λ‘œ λ°”κΎΈμ—ˆμŠ΅λ‹ˆλ‹€!

PDF + Jacobian

이것을 Jacobian을 μ‚¬μš©ν•΄ μ²΄κ³„μ μœΌλ‘œ μˆ˜ν–‰ν•  μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€.

일단 λ³€ν™˜μ— μ˜ν•΄ $Y = g(X)$둜 ν‘œν˜„ν•  수 μžˆμ„ λ•Œ, ν•¨μˆ˜ $g$κ°€ 단쑰 증가/κ°μ†Œ ν•˜λŠ”, λ―ΈλΆ„ κ°€λŠ₯ν•œ ν•¨μˆ˜λΌλ©΄, λ³€ν™˜ν•œ ν™•λ₯ λ³€μˆ˜ $Y$의 λΆ„ν¬λŠ” μ•„λž˜μ™€ κ°™μŠ΅λ‹ˆλ‹€.

\[\begin{aligned} f_Y(y) &= f_X(g^{-1}(y)) \cdot \vert \left(g^{-1}(y)\right)' \vert \\ &= f_X(g^{-1}(y)) \cdot \left\vert \frac{dg}{dy} \right\vert \\ \end{aligned}\]

μ΄λ•Œ, $(g^{-1}(y))’$λŠ” 사싀 Jacobian μž…λ‹ˆλ‹€.

$Y = X^2$의 PDFλ₯Ό Jacobian λ°©λ²•μœΌλ‘œ κ΅¬ν•˜λ©΄, $g(y) = \sqrt{y}$ μ΄λ―€λ‘œ,

\[F_Y(y) = f_X(\sqrt{y}) \cdot \vert \frac{1}{2\sqrt{y}}\vert = 1 \cdot \frac{1}{2\sqrt{y}} = \frac{1}{2\sqrt{y}}\]

Multi-variable Transform

μ΄λ²ˆμ—λŠ” μ„œλ‘œ 독립인 두 ν™•λ₯ λ³€μˆ˜λ₯Ό μ‘°ν•©ν•΄ μƒˆλ‘œμš΄ ν™•λ₯  λ³€μˆ˜λ₯Ό λ§Œλ“œλŠ” 경우λ₯Ό μ‚΄νŽ΄λ΄…λ‹ˆλ‹€. λ―Έμ λΆ„ν•™μ—μ„œ λ³€μˆ˜ λ³€ν™˜ν•˜λ©΄ Jacobian을 κ΅¬ν•΄μ€˜μ•Ό ν–ˆλ“―μ΄ λ™μΌν•˜κ²Œ μˆ˜ν–‰ν•˜λ©΄ λ©λ‹ˆλ‹€!

Example 1

μ„œλ‘œ 독립인 두 ν™•λ₯ λ³€μˆ˜ $X$, $Y$둜 μ•„λž˜μ™€ 같이 μƒˆλ‘œμš΄ 두 ν™•λ₯ λ³€μˆ˜λ₯Ό μ •μ˜ν•©λ‹ˆλ‹€.

\[Z = X + Y, \quad W = X - Y\]

κ°€μž₯ λ¨Όμ €, $(X, Y)$λ₯Ό $(Z, W)$둜 ν‘œν˜„ ν•©λ‹ˆλ‹€.

\[\begin{aligned} X &= (Z + W) / 2 \\ Y &= (Z - W) / 2 \end{aligned}\]

이것은 μ—­λ³€ν™˜ $x(z, w)$와 $y(z, w)$ μž…λ‹ˆλ‹€.

이제 Jacobian 행렬을 κ΅¬ν•©λ‹ˆλ‹€.

\[J = \begin{bmatrix} \partial x / \partial z & \partial x / \partial w \\ \partial y / \partial z & \partial y / \partial w \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}\]

행렬식을 κ΅¬ν•˜λ©΄,

\[\vert \det J \vert = \vert -1/4 - 1/4 \vert = 1/2\]

이제 μ΅œμ’…μ μœΌλ‘œ Joint PDFλ₯Ό κ΅¬ν•˜λ©΄,

\[f_{Z, W}(z, w) = f_{X, Y}\left(\frac{z+w}{2}, \frac{z-w}{2}\right) \cdot \frac{1}{2}\]

Example 2

μ„œλ‘œ 독립인 두 ν™•λ₯ λ³€μˆ˜ $X$, $Y$둜 μ•„λž˜μ™€ 같이 μƒˆλ‘œμš΄ 두 ν™•λ₯ λ³€μˆ˜λ₯Ό μ •μ˜ν•©λ‹ˆλ‹€.

\[Z = X/Y, \quad W = XY\]

κ°€μž₯ λ¨Όμ €, μ—­λ³€ν™˜ $(X, Y)$λ₯Ό μ°ΎμŠ΅λ‹ˆλ‹€.

\[\begin{aligned} X &= \sqrt{ZW} \\ Y &= \sqrt{W/Z} \end{aligned}\]

이것은 μ—­λ³€ν™˜ $x(w, z)$와 $y(z, w)$μž…λ‹ˆλ‹€.

Jacobian 행렬을 κ΅¬ν•©λ‹ˆλ‹€.

\[J = \begin{bmatrix} \partial x / \partial z & \partial x / \partial w \\ \partial y / \partial z & \partial y / \partial w \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \frac{\sqrt{W}}{\sqrt{Z}} & \frac{1}{2} \frac{\sqrt{Z}}{\sqrt{W}} \\ - \frac{1}{2} \frac{\sqrt{W}}{Z \sqrt{Z}} & \frac{1}{2} \frac{1}{\sqrt{ZW}} \end{bmatrix}\]

행렬식을 κ΅¬ν•˜λ©΄,

\[\begin{aligned} \vert \det J \vert &= \left\vert \frac{1}{2} \frac{\sqrt{W}}{\sqrt{Z}} \cdot \frac{1}{2} \frac{1}{\sqrt{ZW}} - \frac{1}{2} \frac{\sqrt{Z}}{\sqrt{W}} \cdot \left(- \frac{1}{2} \frac{\sqrt{W}}{Z \sqrt{Z}} \right) \right\vert \\ &= \left\vert \frac{1}{4} \frac{1}{Z} + \frac{1}{4} \frac{1}{Z} \right\vert \\ &= \frac{1}{2Z} \end{aligned}\]

이제 μ΅œμ’…μ μœΌλ‘œ Joint PDFλ₯Ό κ΅¬ν•˜λ©΄,

\[f_{Z, W}(z, w) = f_{X, Y}\left(\sqrt{zw}, \sqrt{w/z}\right) \cdot \frac{1}{2z}\]

Generalize

Multi-variable ν™•λ₯  λ³€μˆ˜μ—μ„œμ˜ λ³€ν™˜ 과정을 μš”μ•½ν•˜λ©΄ μ•„λž˜μ™€ κ°™μŠ΅λ‹ˆλ‹€!

\[\begin{gather*} f_{Z, W} (z, w) = f_{X, Y} \left(x(z, w), y(z, w)\right) \cdot \vert \det J \, \vert \\ \\ \text{where} \\ \\ J = \begin{bmatrix} \partial x / \partial z & \partial x / \partial w \\ \partial y / \partial z & \partial y / \partial w \end{bmatrix} \end{gather*}\]

ν•˜λŠ” λ°©λ²•λ§Œ 잘 μ•Œκ³  있으면, λ³„λ‘œ μ–΄λ ΅μ§€ μ•ŠμŠ΅λ‹ˆλ‹€ ^^;;

맺음말

μ΄μ–΄μ§€λŠ” ν¬μŠ€νŠΈμ—μ„  μ»΄ν“¨ν„°μ—μ„œ μ •κ·œ 뢄포λ₯Ό λ”°λ₯΄λŠ” 랜덀 λ‚œμˆ˜λ₯Ό λ§Œλ“œλŠ” 방법을 μ²΄κ³„μ μœΌλ‘œ μ œμ•ˆν•œ β€œBox-Muller Transform”에 λŒ€ν•΄μ„œ μ‚΄νŽ΄λ΄…λ‹ˆλ‹€!

➑️ Box-Muller Transform