์„ ํ˜•/๋น„์„ ํ˜• ๋ณ€ํ™˜์„ ํ†ตํ•ด ์ƒˆ๋กœ์šด ํ™•๋ฅ  ๋ณ€์ˆ˜๋ฅผ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด. Jacobian์œผ๋กœ ํ™•๋ฅ  ๋ฐ€๋„ ํ•จ์ˆ˜ ๋ณด์ •ํ•˜๊ธฐ

7 minute read

2025๋…„ ๋งˆ์ง€๋ง‰ ํ•™๊ธฐ ์ˆ˜์—…์ธ โ€œํ™•๋ฅ ๊ฐœ๋ก (MATH431)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Introduction to Probability Theory์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

๋“ค์–ด๊ฐ€๋ฉฐ

2xx ํ™•ํ†ต๊ณผ 4xx์˜ ํ™•๋ฅ ๊ฐœ๋ก ์„ ๋“ค์œผ๋ฉด์„œ ๋งŽ์€ ์ด์‚ฐ ํ™•๋ฅ ๋ณ€์ˆ˜์™€ ์—ฐ์† ํ™•๋ฅ ๋ณ€์ˆ˜๋ฅผ ์‚ดํŽด๋ณด์•˜์Šต๋‹ˆ๋‹ค.

๊ทธ๋Ÿฐ๋ฐ, ์„ธ์ƒ์—๋Š” ์ด๊ฒƒ๋ณด๋‹ค ๋” ๋งŽ๊ณ  ๋‹ค์–‘ํ•œ ํ™•๋ฅ ๋ณ€์ˆ˜๋“ค๊ณผ ์ƒํ™ฉ์ด ์กด์žฌํ•˜๊ณ , ์ด๋“ค์„ ์ƒ์„ฑํ•˜๊ฑฐ๋‚˜ ๋ชจ๋ธ๋งํ•  ๋•Œ, ํ™•๋ฅ ๋ณ€์ˆ˜์˜ โ€œ๋ณ€ํ™˜(transform)โ€œ์„ ํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

์ด๋ฒˆ ํฌ์ŠคํŠธ์—์„œ๋Š” ๊ทธ ๊ณผ์ •์„ ์—„๋ฐ€ํžˆ ์‚ดํŽด๋ณผ ์˜ˆ์ •์ž…๋‹ˆ๋‹ค!

Linear Transform

$X \sim \text{Unif}(0, 1)$๋ฅผ ๋”ฐ๋ฅด๋Š” ํ™•๋ฅ  ๋ณ€์ˆ˜๋ฅผ $Y = 2X$๋กœ ๋ณ€ํ™˜ํ•ด๋ด…์‹œ๋‹ค.

์ด ํ™•๋ฅ ๋ณ€์ˆ˜์˜ PDF๋Š” $[0, 1]$ ์‚ฌ์ด์—์„œ $f_X(x) = 1$ ์˜€์Šต๋‹ˆ๋‹ค.

์ด๊ฒƒ์„ 2๋ฐฐ๋กœ ๋Š˜๋ฆฐ $Y = 2X$๋Š” ๊ทธ ๋ฒ”์œ„๋กœ 2๋ฐฐ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. $Y \in [0, 2]$.

์ด์ œ ์ด๊ฒƒ์˜ CDF๋ฅผ ๊ตฌํ•ด๋ณด๋ฉด,

\[F_Y(y) = P(Y \le y) = P(2X \le y) = P(X \le y/2) = F_X(y/2)\]

$X$์˜ CDF๋Š” $F_X(x) = x$ ์˜€์œผ๋ฏ€๋กœ, $Y$์˜ CDF๋Š”

\[F_Y(y) = y / 2 \quad (0 \le y \le 2)\]

์ด์ œ CDF๋ฅผ ๋ฏธ๋ถ„ํ•ด์„œ PDF๋ฅผ ๊ตฌํ•˜๋ฉด,

\[f_Y(y) = 1/2 \quad (0 \le y \le 2)\]

Non-linear Transform

์ด๋ฒˆ์—๋Š” $X \sim \text{Unif}(0, 1)$๋ฅผ ๋”ฐ๋ฅด๋Š” ํ™•๋ฅ  ๋ณ€์ˆ˜๋ฅผ $Y = X^2$๋กœ ๋ณ€ํ™˜ํ•ด๋ด…์‹œ๋‹ค.

์ƒˆ๋กœ์šด ํ™•๋ฅ ๋ณ€์ˆ˜ $Y$์˜ ๋ฒ”์œ„๋Š” ๊ทธ๋Œ€๋กœ $[0, 1]$์ž…๋‹ˆ๋‹ค. ์ด๊ฒƒ์˜ CDF๋ฅผ ๋ฐ”๋กœ ๊ตฌํ•ด๋ณด๋ฉด,

\[\begin{aligned} F_Y(y) &= P(Y \le y) \\ &= P(X^2 \le y) \\ &= P(\vert X \vert \le \sqrt{y}) \\ &= P(X \le \sqrt{y}) + P(-X \le \sqrt{y}) \end{aligned}\]

์ด๋•Œ, $X \sim \text{Unif}(0, 1)$์ด๋ฏ€๋กœ, $X > 0$์ธ ๊ฒฝ์šฐ๋งŒ ๊ณ ๋ คํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค! ๋”ฐ๋ผ์„œ,

\[F_Y(y) = P(X \le \sqrt{y}) = \sqrt{y}\]

์ด์ œ CDF๋ฅผ ๋ฏธ๋ถ„ํ•ด์„œ PDF๋ฅผ ๊ตฌํ•˜๋ฉด,

\[f_Y(y) = \frac{1}{2\sqrt{y}} \quad (0 < y \le 1)\]

์„ ํ˜• ๋ณ€ํ™˜์€ Uniform ๋ถ„ํฌ๋ฅผ ๋‹ค์‹œ Uniform ๋ถ„ํฌ๋กœ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด์—, ๋น„์„ ํ˜• ๋ณ€ํ™˜์€ Uniform ๋ถ„ํฌ๋ฅผ ์™„์ „ํžˆ ๋‹ค๋ฅธ ํ˜•ํƒœ์˜ ๋ถ„ํฌ๋กœ ๋ฐ”๊พธ์—ˆ์Šต๋‹ˆ๋‹ค!

PDF + Jacobian

์ด๊ฒƒ์„ Jacobian์„ ์‚ฌ์šฉํ•ด ์ฒด๊ณ„์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.

์ผ๋‹จ ๋ณ€ํ™˜์— ์˜ํ•ด $Y = g(X)$๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์„ ๋•Œ, ํ•จ์ˆ˜ $g$๊ฐ€ ๋‹จ์กฐ ์ฆ๊ฐ€/๊ฐ์†Œ ํ•˜๋Š”, ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ํ•จ์ˆ˜๋ผ๋ฉด, ๋ณ€ํ™˜ํ•œ ํ™•๋ฅ ๋ณ€์ˆ˜ $Y$์˜ ๋ถ„ํฌ๋Š” ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\[\begin{aligned} f_Y(y) &= f_X(g^{-1}(y)) \cdot \vert \left(g^{-1}(y)\right)' \vert \\ &= f_X(g^{-1}(y)) \cdot \left\vert \frac{dg}{dy} \right\vert \\ \end{aligned}\]

์ด๋•Œ, $(g^{-1}(y))โ€™$๋Š” ์‚ฌ์‹ค Jacobian ์ž…๋‹ˆ๋‹ค.

$Y = X^2$์˜ PDF๋ฅผ Jacobian ๋ฐฉ๋ฒ•์œผ๋กœ ๊ตฌํ•˜๋ฉด, $g(y) = \sqrt{y}$ ์ด๋ฏ€๋กœ,

\[F_Y(y) = f_X(\sqrt{y}) \cdot \vert \frac{1}{2\sqrt{y}}\vert = 1 \cdot \frac{1}{2\sqrt{y}} = \frac{1}{2\sqrt{y}}\]

Multi-variable Transform

์ด๋ฒˆ์—๋Š” ์„œ๋กœ ๋…๋ฆฝ์ธ ๋‘ ํ™•๋ฅ ๋ณ€์ˆ˜๋ฅผ ์กฐํ•ฉํ•ด ์ƒˆ๋กœ์šด ํ™•๋ฅ  ๋ณ€์ˆ˜๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒฝ์šฐ๋ฅผ ์‚ดํŽด๋ด…๋‹ˆ๋‹ค. ๋ฏธ์ ๋ถ„ํ•™์—์„œ ๋ณ€์ˆ˜ ๋ณ€ํ™˜ํ•˜๋ฉด Jacobian์„ ๊ตฌํ•ด์ค˜์•ผ ํ–ˆ๋“ฏ์ด ๋™์ผํ•˜๊ฒŒ ์ˆ˜ํ–‰ํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค!

Example 1

์„œ๋กœ ๋…๋ฆฝ์ธ ๋‘ ํ™•๋ฅ ๋ณ€์ˆ˜ $X$, $Y$๋กœ ์•„๋ž˜์™€ ๊ฐ™์ด ์ƒˆ๋กœ์šด ๋‘ ํ™•๋ฅ ๋ณ€์ˆ˜๋ฅผ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.

\[Z = X + Y, \quad W = X - Y\]

๊ฐ€์žฅ ๋จผ์ €, $(X, Y)$๋ฅผ $(Z, W)$๋กœ ํ‘œํ˜„ ํ•ฉ๋‹ˆ๋‹ค.

\[\begin{aligned} X &= (Z + W) / 2 \\ Y &= (Z - W) / 2 \end{aligned}\]

์ด๊ฒƒ์€ ์—ญ๋ณ€ํ™˜ $x(z, w)$์™€ $y(z, w)$ ์ž…๋‹ˆ๋‹ค.

์ด์ œ Jacobian ํ–‰๋ ฌ์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.

\[J = \begin{bmatrix} \partial x / \partial z & \partial x / \partial w \\ \partial y / \partial z & \partial y / \partial w \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}\]

ํ–‰๋ ฌ์‹์„ ๊ตฌํ•˜๋ฉด,

\[\vert \det J \vert = \vert -1/4 - 1/4 \vert = 1/2\]

์ด์ œ ์ตœ์ข…์ ์œผ๋กœ Joint PDF๋ฅผ ๊ตฌํ•˜๋ฉด,

\[f_{Z, W}(z, w) = f_{X, Y}\left(\frac{z+w}{2}, \frac{z-w}{2}\right) \cdot \frac{1}{2}\]

Example 2

์„œ๋กœ ๋…๋ฆฝ์ธ ๋‘ ํ™•๋ฅ ๋ณ€์ˆ˜ $X$, $Y$๋กœ ์•„๋ž˜์™€ ๊ฐ™์ด ์ƒˆ๋กœ์šด ๋‘ ํ™•๋ฅ ๋ณ€์ˆ˜๋ฅผ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.

\[Z = X/Y, \quad W = XY\]

๊ฐ€์žฅ ๋จผ์ €, ์—ญ๋ณ€ํ™˜ $(X, Y)$๋ฅผ ์ฐพ์Šต๋‹ˆ๋‹ค.

\[\begin{aligned} X &= \sqrt{ZW} \\ Y &= \sqrt{W/Z} \end{aligned}\]

์ด๊ฒƒ์€ ์—ญ๋ณ€ํ™˜ $x(w, z)$์™€ $y(z, w)$์ž…๋‹ˆ๋‹ค.

Jacobian ํ–‰๋ ฌ์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.

\[J = \begin{bmatrix} \partial x / \partial z & \partial x / \partial w \\ \partial y / \partial z & \partial y / \partial w \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \frac{\sqrt{W}}{\sqrt{Z}} & \frac{1}{2} \frac{\sqrt{Z}}{\sqrt{W}} \\ - \frac{1}{2} \frac{\sqrt{W}}{Z \sqrt{Z}} & \frac{1}{2} \frac{1}{\sqrt{ZW}} \end{bmatrix}\]

ํ–‰๋ ฌ์‹์„ ๊ตฌํ•˜๋ฉด,

\[\begin{aligned} \vert \det J \vert &= \left\vert \frac{1}{2} \frac{\sqrt{W}}{\sqrt{Z}} \cdot \frac{1}{2} \frac{1}{\sqrt{ZW}} - \frac{1}{2} \frac{\sqrt{Z}}{\sqrt{W}} \cdot \left(- \frac{1}{2} \frac{\sqrt{W}}{Z \sqrt{Z}} \right) \right\vert \\ &= \left\vert \frac{1}{4} \frac{1}{Z} + \frac{1}{4} \frac{1}{Z} \right\vert \\ &= \frac{1}{2Z} \end{aligned}\]

์ด์ œ ์ตœ์ข…์ ์œผ๋กœ Joint PDF๋ฅผ ๊ตฌํ•˜๋ฉด,

\[f_{Z, W}(z, w) = f_{X, Y}\left(\sqrt{zw}, \sqrt{w/z}\right) \cdot \frac{1}{2z}\]

Generalize

Multi-variable ํ™•๋ฅ  ๋ณ€์ˆ˜์—์„œ์˜ ๋ณ€ํ™˜ ๊ณผ์ •์„ ์š”์•ฝํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค!

\[\begin{gather*} f_{Z, W} (z, w) = f_{X, Y} \left(x(z, w), y(z, w)\right) \cdot \vert \det J \, \vert \\ \\ \text{where} \\ \\ J = \begin{bmatrix} \partial x / \partial z & \partial x / \partial w \\ \partial y / \partial z & \partial y / \partial w \end{bmatrix} \end{gather*}\]

ํ•˜๋Š” ๋ฐฉ๋ฒ•๋งŒ ์ž˜ ์•Œ๊ณ  ์žˆ์œผ๋ฉด, ๋ณ„๋กœ ์–ด๋ ต์ง€ ์•Š์Šต๋‹ˆ๋‹ค ^^;;

๋งบ์Œ๋ง

์ด์–ด์ง€๋Š” ํฌ์ŠคํŠธ์—์„  ์ปดํ“จํ„ฐ์—์„œ ์ •๊ทœ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด๋Š” ๋žœ๋ค ๋‚œ์ˆ˜๋ฅผ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ์ฒด๊ณ„์ ์œผ๋กœ ์ œ์•ˆํ•œ โ€œBox-Muller Transformโ€์— ๋Œ€ํ•ด์„œ ์‚ดํŽด๋ด…๋‹ˆ๋‹ค!

โžก๏ธ Box-Muller Transform