Unique Factorization Domain - 1
2020-2ํ๊ธฐ, ๋ํ์์ โํ๋๋์1โ ์์ ์ ๋ฃ๊ณ ๊ณต๋ถํ ๋ฐ๋ฅผ ์ ๋ฆฌํ ๊ธ์ ๋๋ค. ์ง์ ์ ์ธ์ ๋ ํ์์ ๋๋ค :)
Associates / Associated Element
Definition 1. Associates
For two elts $a$, $b$ in a (Ring + Unity),
$a$ and $b$ are associates when $a \mid b$ and $b \mid a$. (Divisible by each other)
(cf)
$a \mid b \implies b = ax$
$b \mid a \implies a = by$
$a = by = (ax)y = axy$
๋ฐ๋ผ์ $xy = 1$
Definition 2. Associates
For two elts $a$, $b$ in a (Ring + Unity),
$a$ and $b$ are associates each other,
if one can be obtained from the other by multiplying by some unit.
$\equiv$ $a = bu$ for some unit $u$.
Example. from StackExchange
In the Ring of Integers $\mathbb{Z}$, the units are $1$ and $-1$.
If $a, b \in \mathbb{Z}$ are associates, then $a = ub$ for some unit $u$.
Therefore $a = 1 \cdot b = b$ or $a = (-1) \cdot b = -b$.
Two Integers are associates in $\mathbb{Z}$ $\iff$ they are the same up to sign.
Unique Factorization Domain
Definition 1. Unique Factorization Domain
An Integral Domain in which every non-zero elt has a unique factorization;
i.e. unique decomposition as the product of prime elements (or irreducible elements).
โป Note: In UFD, every irreducible element is a prime element.
Definition 2. Unique Factorization Domain
- Every $a \in D$ ,which is a non-zero & non-unit, can be written as a product of irreducibles.
- This decomposition is unique up to reordering, and up to associates.
Assume that two decompositions $a = p_1 \cdots p_n = q_1 \cdots q_m$ (all $p_i$, $q_i$ are irreducibles)
Then, $n=m$, and there exist a permutation $\sigma \in S_n$ s.t. $p_i = q_{\sigma(i)}$ are associates for all $i=1, \dots, n$.
Theorem. 1
In UFD, Irreducible elt is also a Prime elt.
์ผ๋ฐ์ ์ผ๋ก Prime element๋ฉด Irreducible element๋ค. link
ํ์ง๋ง, Irreduciblility๊ฐ Primality๋ฅผ ํญ์ ๋ณด์ฅํ๋ ๊ฒ์ ์๋๋ค.
๊ทธ๋ฐ๋ฐ UFD์์๋ ํน๋ณํ Irreducibility๊ฐ Primality๋ฅผ ๋ณด์ฅํ๋ค!!
proof.
Let $p \in D$ be a irreducible element.
Let $p \mid ab$ for some $a, b \in D$.
(Goal) show $p \mid a$ or $p \mid b$
$ab = p\cdot c$ for some $c \in D$.
then, since $a$, $b$, $c$ are in UFD, they can be written as below
\[ab = (a_1 ... a_n)(b_1 ... b_m) = p \cdot (c_1 ... c_k)\]์ด๋ $a$, $b$, $c$์ factorization์ด unique ํ๋ฏ๋ก $p$๋ $ab$์ irreducible ์ค ํ๋์ associate ํด์ผ ํ๋ค.
์ฆ, $p \sim a_i$ or $p \sim b_i$.
$\implies$ $p = a_i u$ or $p = b_i u$ for some unit $u$.
Let assume $p \sim a_i \equiv p = a_i u$.
\[a = a_1 \cdots a_n = a_1 \cdots (pu^{-1}) \cdots a_n\]์ด๊ฒ์ $p \mid a$๋ฅผ ์๋ฏธํ๋ค.
๋ง์ฐฌ๊ฐ์ง๋ก $p \sim b_i$๋ฅผ ๊ฐ์ ํ๋ฉด, $p \mid b$๋ฅผ ์ป๋๋ค.
๋ฐ๋ผ์ $p \mid ab$์ ๋ํด $p \mid a$ or $p \mid b$์ด๋ฏ๋ก
Irreducible element์ธ $p$๋ Prime element์ด๊ธฐ๋ ํ๋ค. $\blacksquare$
Corollary.
$D$: Integral Domain
$D$ is an UFD
$\iff$ Every non-zero elt is a product of finitely many prime elt.
PID์ UFD ์ฌ์ด์ ๊ด๊ณ์ ๋ํด์ UFD - 2์์ ์ด์ด์ง๋๋ค.
-
Dummit & Foote, โAbstract Algebraโ, 286pย ↩