2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

5 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)


์ด๋ฒˆ ํŒŒํŠธ์—์„œ๋Š” Division Algorithm ์— ๋Œ€ํ•œ ์ผ๋ฐ˜ํ™”๋ฅผ ๋‹ค๋ฃฌ๋‹ค.



Euclidean Norm & Euclidean Domain


Definition.

A Euclidean norm on an integral domain $D$

is a function $\nu$ mapping the non-zero elements of $D$ into the non-negative integers

such that the following conditions are satisfied:

  1. For all $a, b \in D$ with $b \ne 0$, there exist $q$ and $r$ in $D$ s.t. $a = bq + r$, where either $r = 0$ or $\nu(r) = \nu(b)$.

  2. For all non-zero $a, b \in D$, $\nu(a) \le \nu(ab)$.

โ€œEuclidean normโ€์„ ๋‹ค๋ฅธ ๋ง๋กœ โ€œEuclidean valuationโ€์ด๋ผ๊ณ ๋„ ํ•œ๋‹ค.


Definition.

An integral domain $D$ is an โ€œEuclidean Domainโ€

if $\exists$ a Euclidean norm on $D$.


Example.

\[\begin{aligned} \mathbb{Z}^{*} &\longrightarrow \{ 1, 2, \cdots, \}\\ n &\longmapsto \left| n \right| \end{aligned}\]


Example.

\[\begin{aligned} F[x]^{*} &\longrightarrow \{0, 1, 2, \cdots \} \\ f(x) &\longmapsto \deg (f(x)) \end{aligned}\]




Theorem 46.4

Every Euclidean Domain is a PID.


proof.

Let $D$ be a Euclidean Domain with a Euclidean norm $\nu$.

Let $N$ be an ideal in $D$.

If $N = \{ 0 \}$, then $N = \left< 0 \right>$ and $N$ is principal.

Supp. that $N \ne \{ 0 \}$.

Then there exist some $b \ne 0$ in $N$ s.t. $\nu (b) \le \nu (n)$ for all $n \in N$.

Claim: $N = \left< b \right>$.

Let $a \in N$, then by Condition 1 for E.D.,

there exist $q$ and $r$ in $D$ s.t.

\[a = bq + r\]

where either $r = 0$ or $\nu (r) < \nu (b)$.

$r = a - bq$์— ๋Œ€ํ•ด $a, b \in N$์ด๋ฏ€๋กœ $r \in N$์ด๋‹ค.($\because$ $N$ is an ideal)

minimal $\nu(b)$๋กœ $b$๋ฅผ ๊ณจ๋ž์œผ๋ฏ€๋กœ $r$์ด $\nu(r) < \nu(b)$์ธ ๊ฒฝ์šฐ๋Š” ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. ๋”ฐ๋ผ์„œ $r = 0$์ด๋‹ค.

๋”ฐ๋ผ์„œ $a = bq$์ด๋‹ค.

์ด๊ฒƒ์€ Ideal $N$์ด principal ideal $\left< b \right>$์ž„์„ ์˜๋ฏธํ•œ๋‹ค. $\blacksquare$


Corollary 46.5

Every Euclidean Domain is a UFD.

์œ„์˜ ์ •๋ฆฌ๋ฅผ ํ†ตํ•ด E.D.๊ฐ€ PID์ž„์„ ๋ณด์˜€๋‹ค. ํ•˜์ง€๋งŒ, ์ผ๋ฐ˜์ ์œผ๋กœ ๋ฐ˜๋Œ€ ๋ช…์ œ๋Š” ์„ฑ๋ฆฝํ•˜์ง€ ์•Š๋Š”๋‹ค!!

PID๊ฐ€ E.D.๊ฐ€ ๋˜์ง€ ์•ˆ๋Š” ๊ฒฝ์šฐ๋ฅผ ์ฐพ๋Š” ๊ฒƒ์€ ์ƒ๊ฐ๋ณด๋‹ค ์‰ฝ์ง„ ์•Š๋‹คโ€ฆ



Arithmetic in Euclidean Domains


Theorem 46.5

For a E.D. with Euclidean norm $\nu$,

  1. $\nu(1)$ is minimal among all $\nu(a)$ for non-zero $a \in D$.

  2. $u \in D$ is a unit $\iff$ $\nu(u) = \nu (1)$.


proof.

(1๋ฒˆ ๋ช…์ œ์— ๋Œ€ํ•œ ์ฆ๋ช…)

Euclidean norm $\nu$์˜ ๋‘๋ฒˆ์žฌ ์กฐ๊ฑด์— ์˜ํ•˜๋ฉด ์•„๋ž˜๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค.

\[\nu(1) \le \nu(1a) = \nu(a)\]

$\blacksquare$


(2๋ฒˆ ๋ช…์ œ์— ๋Œ€ํ•œ ์ฆ๋ช…)

if $u$ is a unit in $D$, then

\[\nu (u) \le \nu (u u^{-1}) = \ne (1)\]

๋ฐ˜๋Œ€๋กœ $\nu (u) = \nu (1)$๋ผ๋ฉด, division algorithm์— ์˜ํ•ด ์•„๋ž˜์˜ ์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

\[1 = uq + r\]

where either $r=0$ or $\nu(r) < \nu(u)$

์ด๋•Œ, $\nu(1)$์€ E.D.์˜ ๋ชจ๋“  ์›์†Œ์— ๋Œ€ํ•ด minimal์ด๊ณ , $\nu(u) = \nu(1)$์ด๋ฏ€๋กœ $\nu(r) < \nu(u)$์ธ ๊ฒฝ์šฐ๋Š” ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค.

๋”ฐ๋ผ์„œ $r=0$์ด ๋˜๊ณ , $1 = uq$์ด๋ฏ€๋กœ $u$๋Š” unit์ด๋‹ค.

$\blacksquare$



Example.

For $\mathbb{Z}$, $\nu(n) = \left| n \right|$.

$\min \nu (n) = 1 = \nu (1)$.

when $\nu(n) = 1$, $n = 1, -1$.

๊ทธ๋ฆฌ๊ณ  $1, -1$์€ $\mathbb{Z}$์—์„œ unit์ด๋‹ค.


Example.

$F[x]$, for non-zero $f(x)$, $\nu(f(x)) = \deg f(x)$.

$\min \ne(f(x)) = 0$.

$\nu(f(x)) = 0 = \nu (1)$ $\iff$ $f$: const

Therefore, $\mathcal{U}(F[x]) = F^{*}$.



Euclidean Algorithm

โ€œ์œ ํด๋ฆฌ๋“œ ์•Œ๊ณ ๋ฆฌ์ฆ˜โ€์€ ๋‘ ์ •์ˆ˜์˜ GCD๋ฅผ ์ฐพ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋‹ค.

์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ •์ˆ˜ ์ง‘ํ•ฉ $\mathbb{Z}$์„ ์ผ๋ฐ˜ํ™”ํ•œ Euclidean Domain์—์„œ ์ ์šฉํ•˜์—ฌ, โ€œEuclidean Domain์—์„œ GCD๋ฅผ ์ฐพ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜โ€์œผ๋กœ ์ผ๋ฐ˜ํ™” ํ•  ์ˆ˜ ์žˆ๋‹ค!!

์ˆ˜์—… ๋•Œ ๋‹ค๋ฃจ์ง€๋Š” ์•Š์•˜์–ด์„œ, ๋ณธ ๊ธ€์—์„œ๋Š” ์งง๊ฒŒ ์–ธ๊ธ‰ํ•˜๊ณ  ๋„˜์–ด๊ฐ€๊ฒ ๋‹ค.



$\mathbb{Z}$์™€ $F[x]$๋Š” ๋Œ€ํ‘œ์ ์ธ Euclidean Domain์ด๋‹ค.

๋‹ค์Œ ํฌ์ŠคํŠธ์—์„  ์กฐ๊ธˆ ํŠน๋ณ„ํ•˜๊ณ  ์ค‘์š”ํ•œ Euclidean Domain์ธ โ€œGaussian Integerโ€์— ๋Œ€ํ•ด ๋‹ค๋ฃฌ๋‹ค. link