Gaussian Integer
2020-2ํ๊ธฐ, ๋ํ์์ โํ๋๋์1โ ์์ ์ ๋ฃ๊ณ ๊ณต๋ถํ ๋ฐ๋ฅผ ์ ๋ฆฌํ ๊ธ์ ๋๋ค. ์ง์ ์ ์ธ์ ๋ ํ์์ ๋๋ค :)
Gaussian Integer๋ โEuclidean Domainโ์ ์ผ์ข ์ด๋ค. Euclidean Domain์ ๋ํ ํฌ์คํธ๋ ์ด๊ณณ์์ ํ์ธํ ์ ์๋ค.
Gaussian Integers
Definition.
A Gaussian Integer is a complex number $a + bi$, where $a, b \in \mathbb{Z}$.
For Gaussian integer $\alpha = a + bi$, the norm $N(\alpha) = a^2 + b^2$.
์์ Gaussian Integer๋ฅผ ๋ชจ๋ ๋ชจ์ ์งํฉ์ด ๋ฐ๋ก $\mathbb{Z}[i] \subset \mathbb{C}$๊ฐ ๋๋ค.
์ฐ๋ฆฌ์ ๋ชฉํ๋ โGaussian Integers $\mathbb{Z}[i]$๊ฐ Euclidean Domain์ด ๋จโ์ ๋ณด์ด๋ ๊ฒ์ด๋ค!
Lemma 47.2
On $\mathbb{Z}[i]$, the following properties of Norm holds.
- $N(\alpha) \ge 0$
- $N(\alpha) = 0 \iff \alpha = 0$
- $N(\alpha \beta) = N(\alpha)N(\beta)$
์ฆ, $N$์ semi-group homomoprhism์ด๋ค.
Gaussian Norm $N$์ ์ ์๊ฐํด๋ณด๋ฉด, ๋๋ฌด ๋น์ฐํ ๋ช ์ ๋ค์ด๋ค.
Lemma 47.3
$Z[i]$ is an Integral Domain.
proof.
$\mathbb{Z}[i]$๋ commutative ring with unity์ด๋ค.
$\mathbb{Z}[i]$๊ฐ Integral Domain์์ ๋ณด์ด๊ธฐ ์ํด zero-divisor๊ฐ ์กด์ฌํ์ง ์์์ ๋ณด์ฌ์ผ ํ๋ค.
โLemma 47.2โ์ ์ํด
if $\alpha \beta = 0$, then
\[N(\alpha)N(\beta) = N(\alpha \beta) = N(0) = 0\]๋ฐ๋ผ์ $\alpha \beta = 0$์ $N(\alpha) = 0$ ๋๋ $N(\beta) = 0$์ ์๋ฏธํํ๋ค.
๋ค์ โLemma 47.2โ์ ์ํด ์์ ๊ฒฐ๊ณผ๋ $\alpha = 0$ ๋๋ $\beta = 0$์ ์๋ฏธํ๋ค.
์ฆ, zero-divisor๊ฐ ์กด์ฌํ์ง ์์ผ๋ฏ๋ก $\mathbb{Z}[i]$๋ Integral Domain์ด๋ค.
Theorem 47.4
The function $\nu$ given by $\nu(\alpha) = N(\alpha)$ for non-zero $\alpha \in \mathbb{Z}[i]$ is an Euclidean norm on $\mathbb{Z}[i]$.
Thus $\mathbb{Z}[i]$ is an Euclidean Domain.
proof.
Note that for $\beta = b_1 + b_2 i \ne 0$, $N(\beta) = {b_1}^2 + {b_2}^2$, so $N(\beta) \ge 1$.
Then for all non-zero $\alpha, \beta \in \mathbb{Z}[i]$, $N(\alpha) \le N(\alpha)N(\beta) = N(\alpha \beta)$.
This proves Condition 2 for a Euclidean norm.
์ด์ Euclidean norm์ ์ฒซ๋ฒ์จฐ ์กฐ๊ฑด์ธ โdivision algorithmโ์ ๋ํด ์ฆ๋ช ํด์ผ ํ๋ค.
Let $\alpha, \beta \in \mathbb{Z}[i]$ with $\alpha = a_1 + a_2 i$, $\beta = b_1 + b_2 i \ne 0$.
We must find $\sigma, \rho \in \mathbb{Z}[i]$ s.t. $\alpha = \beta \sigma \rho$, where either $\rho = 0$ or $N(\rho) < N(\beta)$.
Let $\alpha / \beta = r + si$ for $r, s \in \mathbb{Q}$. (by $\mathbb{C}$ ์๋ ์ฐ์ฐ)
Let $n, m \in \mathbb{Z}$ as close as possible to the rational numbers $r$ and $s$.
Let $\sigma = n + m i$ and $\rho = \alpha - \beta \sigma$.
If $\rho = 0$, we are done.
Otherwise, by construction of $\sigma$, we see that $\left| r - n \right| \le \frac{1}{2}$ and $\left| s - m \right| \le \frac{1}{2}$
Therefore,
\[\begin{aligned} N \left( \frac{\alpha}{\beta} - \sigma \right) &= N \left( (r+si) - (n+mi) \right) \\ &= N \left( (r - n) - (s - m)i \right) \le \left( \frac{1}{2} \right)^2 + \left( \frac{1}{2} \right)^2 = \frac{1}{2} \end{aligned}\]Thus, we obtain
\[\begin{aligned} N(\rho) &= N(\alpha - \beta \sigma) = N\left( \beta \left( \frac{\alpha}{\beta} - \sigma \right) \right) \\ &= N(\beta)N\left( \frac{\alpha}{\beta} - \sigma \right) \le N(\beta) \frac{1}{2} < N(\beta) \end{aligned}\]so, $N(\rho) < N(\beta)$.
Therefore, Gaussian norm $N$ is an Euclidean norm. $\blacksquare$
โ$\mathcal{U}(\mathbb{Z}[i]) = \{ \pm 1, \pm i\}$โ
๋น์ฐํ ๊ทธ๋ ๊ฒ ์ง๋ง, $\mathbb{Z}[i]$๋ $\mathbb{Z}$์๋ ๋ค๋ฅธ ๋ชจ์ต์ด ๋ฐ๊ฒฌ๋๋ค.
์๋ฅผ ๋ค์ด $\mathbb{Z}$์์ 5๊ฐ irreducible์ธ ๋ฐ๋ฉด,
$\mathbb{Z}[i]$์์ 5๊ฐ $5 = (1 + 2i)(1 - 2i)$๋ก ๋ถํด๊ฐ๋ฅํ๋ค!
Multiplicative Norms
์ด๋ฒ ์น์ ์์๋ ์ธ์ฌํ๊ฒ ์ ์๋ norm์ Integral Domain $D$์ arithmetic structure๋ฅผ ๊ฒฐ์ ํ๋ ๋ฐ์ ๋ง์ ๋์์ ์ค๋ค๋ ์ฌ์ค์ ์ดํด๋ณผ ๊ฒ์ด๋ค.
Algebraic Number Theory์์ ์ด๋ ๊ฒ norm ์ ํตํด ๋์์ ์ธ ๊ตฌ์กฐ๋ฅผ ํ์ ํ๋ ๊ฒ์ด ๋น๋ฒํ๋ค.
Definition.
Let $D$ be an integral domain.
A multiplicative norm $N$ on $D$ is a function mapping $D$ into the integers $\mathbb{Z}$ such that the following conditions are satisfied:
- $N(\alpha) = 0 \iff \alpha = 0$
- $N(\alpha \beta) = N(\alpha) N(\beta)$ for all $\alpha, \beta \in D$
Theorem 47.7
If $D$ is an integral domain with a multiplicative norm $N$,
then
- $N(1) = 1$
- $\left| N(u) \right| = 1$ for every unit $u \in D$.
- If Every $\alpha$ s.t. $\left| N(\alpha) \right| = 1$ is a unit in $D$,
then an elt $\pi$ in $D$ with $\left| N(\pi) \right| = p$ for a prime $p$ is an irreducible of $D$. ๐ฅ
proof.
Let $D$ be an integral domain with a multiplicative norm $N$.
(1๋ฒ ๋ช ์ )
\[N(1) = N(1 \cdot 1) = N(1) N(1)\]show that $N(1) = 1$
(2๋ฒ ๋ช ์ )
If $u$ is a unit in $D$, then
\[1 = N(1) = N(u u^{-1}) = N(u) N(u^{-1})\]Since $N(u)$ is an integer, this implies that $\left| N(u) \right| = 1$.
๐ฅ 3๋ฒ ๋ช ์ ๐ฅ
Supp. that the units of $D$ are exactly the elements of norm $\pm 1$.
For $\pi \in D$ with $\left| N(\pi) \right| = p$ where $p$ is a prime.
Then if $\pi = \alpha \beta$, we have
\[p = \left| N(\pi) \right| = \left| N(\alpha) N(\beta) \right|\]so either $\left| N(\alpha) \right| = 1$ or $\left| N(\beta) \right| = 1$.
By our assumption, this means $\alpha$ or $\beta$ is a unit.
Thus $\pi$ is an irreducible of $D$.
Examples.
In Gaussian Integers $\mathbb{Z}[i]$, $N(\alpha)$ is a multiplicative norm!
$1+2i$ and $1-2i$ are irreducibles.
๋ฐ๋๋ก $5$์ ๊ฒฝ์ฐ $N(5) = 25$์ด๊ธฐ ๋๋ฌธ์ reducible์ด ๋๋ค.
Example. Integral Domain, but not UFD ๐ฅ
Let $\mathbb{Z}[\sqrt{-5}] = \{ a+ib\sqrt{5} \mid a, b \in \mathbb{Z} \}$.
As a subset of the complex numbers $\mathbb{Z}[\sqrt{-5}]$ is an integral domain.
Define $N$ on $\mathbb{Z}[\sqrt{-5}]$ by
\[N(a + b\sqrt{-5}) = a^2 + 5 b^2\]Clearly, $N(\alpha) = 0$ $\iff$ $\alpha = 0$.
Also $N(\alpha \beta) = N(\alpha) N(\beta)$.
์ด๋ฒ์๋ multiplicative norm์ ํน์ง์ ๋น์ถ์ด $\mathbb{Z}[\sqrt{-5}]$์ unit๋ฅผ ์๊ฐํด๋ณด์.
$N(\alpha) = a^2 + 5 b^2 = 1$์ด ๋๋ $\alpha$๋ ์ค์ง $b=0$์ด๊ณ $a = \pm 1$์ด์ด์ผ ํ๋ค.
๋ฐ๋ผ์ $\mathcal{U}(\mathbb{Z}[\sqrt{-5}]) = \{ \pm 1\}$์ด๋ค.
ย ์ด์ $\mathbb{Z}[\sqrt{-5}]$์ ์์์ธ 21์ ๋ํ factorization์ ์ดํด๋ณด์.
21์ ๋ ๊ฐ์ง factorization์ ๊ฐ์ง ์ ์๋ค.
- $21 = (3)(7)$
- $21 = (1+2\sqrt{-5})(1-2\sqrt{-5})$
์ด์ $3$, $7$, $1+2\sqrt{-5}$, $1-2\sqrt{-5}$๊ฐ irreducible์๋ง ๋ณด์ธ๋ค๋ฉด, $\mathbb{Z}[\sqrt{-5}]$๊ฐ UFD๊ฐ ์๋์ ๋ณด์ผ ์ ์๋ค.
($3$์ ๊ฒฝ์ฐ)
Supp. that $3 = \alpha \beta$, then
\[9 = N(3) = N(\alpha) N(\beta)\]$N(\alpha)$๊ฐ ๊ฐ์ง ์ ์๋ ๊ฐ์ 1 ๋๋ 3 ๋๋ 9์ด๋ค.
- If $N(\alpha) = 1$, then $\alpha$ is a unit.
- $N(\alpha) = a^2 + 5 b^2$์ด๋ฏ๋ก $N(\alpha) = 3$๋ฅผ ๋ง์กฑ์ํฌ ์ ์๋ $\alpha$๋ ์กด์ฌํ์ง ์๋๋ค.
- If $N(\alpha) = 9$, $\beta$ is a unit.
๋ฐ๋ผ์ $3$์ irreducible์ด๋ค.
๋น์ทํ ๋ฐฉ๋ฒ์ผ๋ก $7$๊ฐ irreducible์๋ ๋ณด์ผ ์ ์๋ค.
($1 + 2\sqrt{-5}$์ ๊ฒฝ์ฐ)
If $1 + 2\sqrt{-5} = \gamma \delta$, we have
\[21 = N(1 + 2\sqrt{-5}) = N(\gamma)N(\delta)\]๋ฐ๋ผ์ $N(\gamma)$๋ 1, 3, 7, ๋๋ 21์ ๊ฐ์ ๊ฐ๋๋ค.
์์์ 3๊ณผ 7์ norm์ผ๋ก ๊ฐ๋ ์๋ $\mathbb{Z}[\sqrt{-5}]$์ ์กด์ฌํ์ง ์์์ ํ์ธํ๋ค.
๋ฐ๋ผ์ $N(\gamma)$๋ 1 ๋๋ 21์ธ๋ฐ, ์ด๊ฒ์ โeither $\gamma$ or $\delta$ is a unitโ๋ผ๋ ๊ฒฐ๊ณผ๋ฅผ ์ ๋ํ๋ค.
๋ฐ๋ผ์ $1 + 2\sqrt{-5}$๋ irreducible์ด๋ค.
๊ฐ์ ๋ฐฉ๋ฒ์ผ๋ก $1 - 2\sqrt{-5}$๊ฐ irreducible์๋ ๋ณด์ผ ์ ์๋ค.
๋ฐ๋ผ์ $\mathbb{Z}[\sqrt{-5}$๋ Integral Domain์ด์ง๋ง, Unique Factorization์ ๊ฐ์ง์ง ์๋๋ค! $\blacksquare$
์์์ํ ๋ ผ์๋ฅผ ํ์ฉํ๋ฉด, โํ๋ฅด๋ง์ ๋ ์ ๊ณฑ์ ์ ๋ฆฌโ (Fermatโs $p = a^2 + b^2$ Theorem)์ ์ฆ๋ช ํ ์ ์๋ค!!
๋ค์ ํฌ์คํธ: link