2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

6 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

primitive function์— ๋Œ€ํ•œ ๊ณฑ์ด ๋‹ซํ˜€์žˆ์Œ์„ ๋งํ•˜๋Š” Gauss's Lemma๋Š” ์ด๊ณณ์—์„œ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.




Theorem 23.20

If $F$ is field, then every non-constant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials.

The irreducible factorization is unique except for order and for unit.


์ด๋ฒˆ ํŒŒํŠธ์—์„œ๋Š” Field์˜ ์ดˆ์ž…์— ๋‹ค๋ค˜๋˜ Integral Domain $D$๋ฅผ ํ™•์žฅํ•ด ๋งŒ๋“ค์—ˆ๋˜ โ€œQuotient Fieldโ€œ์— ๋Œ€ํ•œ ์„ฑ์งˆ์„ ์‚ฌ์šฉํ•œ๋‹ค!

์ฆ๋ช…์˜ ๊ฐœ์š”๋ฅผ ์„œ์ˆ ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

  1. $D$ : UFD / $F$: Quotient Field of $D$
  2. By โ€œThm 23.20โ€, $F[x]$ is a UFD. (cf. Field โ†’ PID โ†’ UFD)
  3. If $f(x)$ is irreducible in $D[x]$, then $f(x)$ is also irreducible in $F[x]$.
  4. Therefore $f(x) \in D[x]$ can be factored into unique factorization.
  5. $D[x]$ is UFD. $\blacksquare$

์•„๋ž˜์— ๊ธฐ์ˆ ๋˜๋Š” Lemma๋Š” โ€˜step-3โ€™์— ๋Œ€ํ•ด ์„œ์ˆ ํ•œ๋‹ค.




Lemma 45.27

Let $D$ be a UFD, and $F$ be a Quotient field of $D$.

Let $f(x) \in D[x]$, where $\deg f(x) > 0$.

  1. If $f(x)$ is irreducible in $D[x]$, then $f(x)$ is also an irreducible in $F[x]$.

  2. If $f(x)$ is primitive in $D[x]$ and irreducible in $F[x]$, then $f(x)$ is irreducible in $D[x]$.


proof.

Supp. that a non-constant $f(x) \in D[x]$ factors into polynomials of lower degree in $F[x]$ for $r(x), s(x) \in F[x]$.

\[f(x) = r(x)s(x)\]

Then, since $F$ is a Quotient field of $D$, each coefficient in $r(x)$ and $s(x)$ is of the form $a/b$ for some $a, b \in D$.

By clearing denominators, we can get

\[(d)f(x) = r_1(x) s_1(x)\]

for $d \in D$.

By โ€œLemma 45.23โ€, $f(x) = (c)g(x)$, $r_1(x) = (c_1)r_2(x)$, and $s_1(x) = (c_2) s_2(x)$ for primitive polynomaials $g(x), r_2(x), s_2(x)$.

Then,

\[(dc)g(x) = (c_1c_2)r_2(x)s_2(x)\]

and by โ€œLemman 45.25(Gaussโ€™s Lemma)โ€, $r_2(x)s_2(x)$ is primitive.

By โ€œLemma 45.23โ€, $c_1 c_2 = dcu$ for some unit $u$ in $D$.
(non-constant์ธ $(dc)g(x)$๋ฅผ content์™€ primitive๋กœ ๋ถ„๋ฆฌํ•˜๋ฉด, $dcu$์™€ $r_2(x)s_2(x)$์˜ ํŒŒํŠธ๋กœ ๋ถ„๋ฆฌ๋œ๋‹ค๋Š” ๋ง์ด๋‹ค.)

๊ทธ ๊ฒฐ๊ณผ,

\[(dc)g(x) = (dcu)r_2(x)s_2(x)\]

๋”ฐ๋ผ์„œ

\[f(x) = (c) g(x) = (cu) r_2(x) s_2(x)\]

์œ„์˜ ๊ณผ์ •์„ ํ†ตํ•ด Quotient Field polynomial $F[x]$ ์•„๋ž˜์—์„œ $f(x) \in D[x]$์ธ $f(x)$๊ฐ€ factorization ๋œ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ–ˆ๋‹ค.

์ด๋Š” $f(x) \in D[x]$์—์„œ irreducible์ด๋ผ, $F[x]$์—์„œ๋„ irreducible์ž„์„ ๋ณด์žฅํ•œ๋‹ค.

๋˜ํ•œ, ๋งŒ์•ฝ $f(x) \in D[x]$์—์„œ primitive์ด๊ณ , $F[x]$์—์„œ irreducible์ด๋ผ๋ฉด, $f(x)$๋Š” $D[x]$์—์„œ๋„ irreducible์ด๋‹ค. ์™œ๋ƒํ•˜๋ฉด, $D[x] \subseteq F[x]$์ด๊ธฐ ๋•Œ๋ฌธ!

$\blacksquare$



Lemma 45.28

If $D$ is a UFD, and $F$ is Quotient field of $D$,

then a non-constant $f(x) \in D[x]$ factors into a product of two polynomials of lower degrees $r$ and $s$ in $F[x]$

$\iff$ it has a factorization into polynomials of the same degrees $r$ and $s$ in $D[x]$.


proof.

($\implies$)

์•ž์˜ โ€œLemma 45.27โ€์— ์˜ํ•ด ๋งŒ์•ฝ $f(x)$๊ฐ€ $F[x]$์—์„œ reducible ํ•˜๋‹ค๋ฉด, $D[x]$์—์„œ reducible ํ•จ์„ ๋ณด์˜€๋‹ค. (1๋ฒˆ ๋ช…์ œ์˜ ๋Œ€์šฐ)


($\impliedby$)

$D[x] \subseteq F[x]$์ด๋ฏ€๋กœ ๋ช…์ œ์˜ ์—ญ๋„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์„ฑ๋ฆฝํ•œ๋‹ค.




Theorem 45.29

If $D$ is a UFD, then $D[x]$ is a UFD.


proof.

Let $f(x) \in D[x]$ for a non-zero and non-unit $f(x)$.

If $f(x)$ has zero-degrees, we are done.

Supp. that $\deg f(x) > 0$.

Let $f(x) = g_1(x) g_2(x) \cdots g_r(x)$ be a factroziation of $f(x)$ in $D[x]$.
($r$ would be smaller than $\deg f(x)$)

์ด์ œ ๊ฐ $g_i(x)$๋ฅผ content์™€ primitive polynomial๋กœ ๋ถ„ํ•ดํ•ด๋ณด์ž.
โ†’ $g_i(x) = c_i h_i (x)$

primitive function์ธ ๊ฐ $h_i(x)$๋Š” irreducible์ด๋‹ค. (why?)

๋”ฐ๋ผ์„œ

\[f(x) = c_1 h_1 (x) \cdots c_r h_r (x)\]

$h_i (x)$๋Š” ์ด๋ฏธ irreducible์ด๋ฏ€๋กœ, ๊ฐ $c_i \in D$์— ๋Œ€ํ•ด irreducible factorization์„ ์ง„ํ–‰ํ•˜๋ฉด, ์šฐ๋ฆฌ๋Š” $f(x) \in D[x]$์— ๋Œ€ํ•œ irreducible factorization์„ ์–ป๋Š”๋‹ค.

($f(x) \in D[x]$์— ๋Œ€ํ•œ irreducible factorzation์˜ ์œ ์ผ์„ฑ ์ฆ๋ช…์— ๋Œ€ํ•ด์„  ์ถ”ํ›„์— ์—…๋ฐ์ดํŠธ ํ•˜๊ฒ ๋‹ค.)

$\blacksquare$



Applications


Corollary 45.30

If $F$ is a field and $x_1, \cdots, x_n$ are indeterminatnes, then $F[x_1, \cdots, x_n]$ is a UFD.


proof.

By โ€œTheorem 23.20โ€, $F[x_1]$ is a UFD.

By โ€œTheorem 45.29โ€, $(F[x_1])[x_2] = F[x_1, x_2]$ is a UFD.

์ด ๊ณผ์ •์„ ๋ฐ˜๋ณตํ•˜๋ฉด, $F[x_1, \cdots, x_n]$๊ฐ€ UFD๋ผ๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. $\blacksquare$


Example 45.31

โ€œNote every UFD is a PID.โ€

Let $F$ be a field, and $x$ and $y$ be indeterminates.

Then $F[x, y]$ is a UFD.

$F[x, y]$์—์„œ ์ƒ์ˆ˜ํ•ญ์ด 0์ธ ๋ชจ๋“  polynomial์„ ๋ชจ์€ ์ง‘ํ•ฉ $N$์„ ์ƒ๊ฐํ•ด๋ณด์ž.

์ด ์ง‘ํ•ฉ $N$์€ Ideal์ด๋‹ค.

ํ•˜์ง€๋งŒ, $N$์€ principal ideal์€ ์•„๋‹ˆ๋‹ค!

๋”ฐ๋ผ์„œ $F[x, y]$๋Š” UFD์ด์ง€๋งŒ, PID๊ฐ€ ์•„๋‹ˆ๋‹ค. $\blacksquare$


Exercise 46.12. $\mathbb{Z}[x]$ is UFD, but not a PID.