2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

6 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)


์ž ๊น ๋งฅ๋ฝ์„ ๊ณ๋“ค์ด์ž๋ฉด, โ€œGaussโ€™s Lemmaโ€๋Š” ์•„๋ž˜์˜ ๋ช…์ œ๋ฅผ ์ฆ๋ช…ํ•˜๋Š” ๊ณผ์ •์—์„œ ๋งŒ๋‚˜๋Š” ์ค‘๊ฐ„๋‹จ๊ณ„์ด๋‹ค.

"If $D$ is a UFD, then $D[x]$ is a UFD."


์•„๋ž˜์— ์ด์™€ ๋น„์Šทํ•œ ๋Š๋‚Œ์˜ ์ •๋ฆฌ๋“ค์„ ์ข€ ๋ชจ์•„๋ดค๋‹ค.

  • $R$ is a ring $\implies$ $R[x]$ is also a ring.
  • $D$ is an integral domain $\implies$ $D[x]$ is also an integral domain.
  • $F$ is a field $\iff$ $F[x]$ is a PID. (Thm 27.24)
    • ์ด๋•Œ ๋ชจ๋“  Field๋Š” PID์ด๋ฏ€๋กœ ์œ„ ๋ช…์ œ์—์„œ โ€˜fieldโ€™๋ฅผ โ€˜PIDโ€™๋กœ ๋ฐ”๊ฟ”๋„ ์„ฑ๋ฆฝํ•œ๋‹ค.
  • $D$ is an integral domain with an irreducible elt $\implies$ $D[x]$ is not a PID.
  • $F$ is a field $\implies$ $F[x_1, \dots, x_n]$ is not a PID for $n \ge 2$.



์šฐ๋ฆฌ๋Š” ์ง€๊ธˆ๊นŒ์ง€ ์ž์—ฐ์ˆ˜์—์„œ์˜ GCD๋ฅผ ์ ‘ํ–ˆ๋‹ค. ํ•˜์ง€๋งŒ ์•ž์—์„œ ์‚ดํŽด๋ณธ โ€˜์‚ฐ์ˆ ์˜ ๊ธฐ๋ณธ์ •๋ฆฌโ€˜์— ๋”ฐ๋ฅด๋ฉด ์ž์—ฐ์ˆ˜ ์ง‘ํ•ฉ๋„ ๊ฒฐ๊ตญ์€ UFD์˜ ํ•œ ์˜ˆ์— ๋ถˆ๊ณผํ–ˆ๋‹ค. ์ž์—ฐ์ˆ˜ ์ง‘ํ•ฉ์—์„œ ์ •์˜ํ•œ GCD๋ฅผ UFD๋กœ ํ™•์žฅํ•˜์—ฌ ๋‹ค์‹œ ์ •์˜ํ•ด๋ณด์ž.

Definition. GCD in UFD

Let $D$ be a UFD, and $a_1$, $a_2$, โ€ฆ, $a_n$ be non-zero elts of $D$.

$d$ is a GCD of all of $a_i$,

if $d \mid a_i$ for $i=1, โ€ฆ, n$ and all $dโ€™ \in D$ that divides all the $a_i$ also divides $d$.

์ž์—ฐ์ˆ˜ ์ง‘ํ•ฉ์—์„œ๋Š” GCD๊ฐ€ ์œ ์ผํ•˜๊ฒŒ ์กด์žฌํ–ˆ์ง€๋งŒ, ์ž์—ฐ์ˆ˜ ์ง‘ํ•ฉ๋ฅผ ํฌ๊ด„ํ•˜๋Š” ๊ฐœ๋…์ธ UFD์—์„œ GCD๋Š” ๋”์ด์ƒ ์œ ์ผํ•˜์ง€ ์•Š๋‹ค.

UFD์—์„œ ๋‘ ๊ฐœ์˜ GCD $d$, $dโ€™$๊ฐ€ ์กด์žฌํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•ด๋ณด์ž. ๊ทธ๋Ÿฌ๋ฉด, GCD์˜ ์ •์˜์— ์˜ํ•ด $d \mid dโ€™$, $dโ€™ \mid d$๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค.

์ฆ‰, ์„œ๋กœ ๋‹ค๋ฅธ ๋‘ GCD $d$, $dโ€™$๊ฐ€ associate ํ•˜๋‹ค.


Simple Example.

์„œ๋กœ ๋‹ค๋ฅธ ๋‘ GCD์— ๋Œ€ํ•œ ์˜ˆ๋Š” ์ƒ๊ฐ๋ณด๋‹ค ๊ฐ„๋‹จํžˆ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. ๋‘ ์ •์ˆ˜ $6$์™€ $-8$์— ๋Œ€ํ•œ GCD๋Š” $2$์™€ $-2$์ด๋‹ค.

์ฆ‰, ์ •์ˆ˜ $\mathbb{Z}$๋Š” UFD์ด๋ฉด์„œ ์„œ๋กœ ๋‹ค๋ฅธ ๋‘ GCD๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋ฉด์— ์ž์—ฐ์ˆ˜ $\mathbb{N}$๋Š” UFD์ด์ง€๋งŒ, GCD๊ฐ€ ์œ ์ผํ•˜๊ฒŒ ๊ฒฐ์ •๋œ๋‹ค.



Primitive polynomial

Definition. content & primitive part

The content of (polynomial with integer coeffi-.) = $\gcd$ of it coeffi-.

The primitive part of polynomial = quotient of polynomial by its content.

๋”ฐ๋ผ์„œ (polynomial) = (cotent) x (primitive part)


Definition. Primitive Polynomial

A polynomial is primitive, if its content equals 1.



Gaussโ€™s Lemma

Lemma 45.23

If $D$ is a UFD,

then for every non-constant $f(x) \in D[x]$, we have $f(x) = (c)g(x)$, where $c \in D$ and primitive $g(x) \in D[x]$.

(์ฆ‰, UFD์—์„œ ๋ชจ๋“  non-constant $f(x)$๋Š” primitive์˜ ์ƒ์ˆ˜๊ณฑ์ด๋ผ๋Š” ๋ง์ด๋‹ค.)

proof.

Let $f(x) \in D[x]$ be a non-constant polynomial; $f(x) = a_0 + a_1 x + \cdots a_n x^n$

Let $c$ be a gcd of all $a_i$.

Then for each $i$, we have $a_i = c \cdot q_i$ for some $q_i \in D$.

By the distributive law, we have $f(x) = (c) g(x)$.

By definition of gcd $c$, the left polynomial $g(x)$ is a primitive polynomial. $\blacksquare$



Lemma 45.25 Gaussโ€™s Lemma

If $D$ is a UFD, then a product of two primitive polynomials in $D[x]$ is again primitive.

proof.

Let $f(x) = a_0 + a_1 x + \cdots a_n x^n$ and $g(x) = b_0 + b_1 x + \cdots b_m x^m$ be primitive in $D[x]$,

and let $h(x) = f(x)g(x)$.

Let $p$ be an irreducible in $D$.

์ด๋ฏธ $f(x)$, $g(x)$๊ฐ€ primitive์ด๋ฏ€๋กœ $p$๊ฐ€ $a_i$ ์ „๋ถ€๋ฅผ, ๋˜ $b_j$ ์ „๋ถ€๋ฅผ ๋‚˜๋ˆ„์ง€๋Š” ๋ชป ํ•œ๋‹ค.

Let $a_r$ be the first coefficient of $f(x)$ not divisible by $p$;

that is $p \mid a_i$ for $i < r$, but $p \not\mid a_r$.

Similarly, let $b_s$ be the first coefficient of $g(x)$ not divisible by $p$.

The coefficient of $x^{r+s}$ in $h(x) = f(x)g(x)$ is

\[c_{r+s} = (a_0 b_{r+s} + \cdots + a_{r-1} b_{s+1}) + a_r b_s + (a_{r+1} b_{s-1} \cdots a_{r+s} b_0)\]

$p \mid a_i$ for $i < r$์ด๋ฏ€๋กœ $p \mid (a_0 b_{r+s} + \cdots + a_{r-1} b_{s+1})$

๋งˆ์ฐฌ๊ฐ€์ง€๋กœ $p \mid b_j$ for $j < s$์ด๋ฏ€๋กœ $p \mid (a_{r+1} b_{s-1} \cdots a_{r+s} b_0)$

ํ•˜์ง€๋งŒ, $p$๊ฐ€ $a_r$, $b_s$๋ฅผ ๋‚˜๋ˆ„์ง„ ๋ชป ํ•˜๋ฏ€๋กœ $p \not\mid a_r b_s$์ด๋‹ค.

์ข…ํ•ฉํ•˜๋ฉด, ์–ด๋–ค irreducible $p \in D$์ผ์ง€๋ผ๋„ $f(x)g(x)$์˜ ๊ณ„์ˆ˜๋ฅผ ๋‚˜๋ˆ„์ง€ ๋ชป ํ•˜๋Š” ์ง€์ ์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์— $f(x)g(x)$์˜ ๊ณ„์ˆ˜๋Š” ์–ด๋–ค irreducible $p$๋ผ๋„ common divisor๋กœ ๊ฐ€์งˆ ์ˆ˜ ์—†๋‹ค.

๋”ฐ๋ผ์„œ $f(x)g(X)$๋Š” primitive๋‹ค. $\blacksquare$



์ด์ œ ์ด Gaussโ€™s Lemma๋ฅผ ํ™œ์šฉํ•ด ๋ณธ๋ž˜์˜ ๋ชฉ์ ์ธ

"If $D$ is a UFD, then $D[x]$ is a UFD."

๋ฅผ ์ฆ๋ช…ํ•ด๋ณด์ž!

๋‹ค์Œ ํฌ์ŠคํŠธ: Poylnomial over UFD