Random Variables and Probability Distributionss
โํ๋ฅ ๊ณผ ํต๊ณ(MATH230)โ ์์ ์์ ๋ฐฐ์ด ๊ฒ๊ณผ ๊ณต๋ถํ ๊ฒ์ ์ ๋ฆฌํ ํฌ์คํธ์ ๋๋ค. ์ ์ฒด ํฌ์คํธ๋ Probability and Statistics์์ ํ์ธํ์ค ์ ์์ต๋๋ค ๐ฒ
Random Variable
Definition. Random Variable
A <random variable> is a function from $S$ to $\mathbb{R}$ s.t.
\[X: S \longmapsto \mathbb{R}\]Random Variable์ ํํํ๋ ๊ท์น์ผ๋ก๋
- Random Variable์ ๋๋ฌธ์๋ก ํ๊ธฐํ๋ค. $X$, $Y$, $Z$
- ์๋ฌธ์ $x$๋ Random Variable์ด ๊ฐ์ง ์ ์๋ ๊ฐ(= ์น์ญ์ ๊ฐ) ์ค ํ๋๋ฅผ ์๋ฏธํ๋ค.
๋ง์ฝ Random Variable $X$๊ฐ 0, 1 ๋ ์ค ํ๋๋ฅผ ํํ๋ ๊ฒ๊ณผ ๊ฐ์ด ๋ ๊ฐ ์ค ํ๋๋ฅผ ์ทจํ๋ function์ด๋ผ๋ฉด, ์ด๊ฒ์ <Bernoulli Random Variable>์ด๋ผ๊ณ ํ๋ค.
Discrete vs. Continuous
Definition. Discrete Sample Space
If a sample space $S$ contains a finite or an unending sequence of possibilities, it is called a <discrete sample space>.
Definition. Continuous Sample Space
If a sample space $S$ contains an infinite number of possibilities or equal to the number of points on a line segment, it is called a <continuous sample space>.
์ฆ, Sample Space $S$์ Cardinality์ ๋ฐ๋ผ โDiscreteโ์ด๋ โContinuousโ๊ฐ ๋๋๋ค.
Definition. Discrete Random Variable
A random variable is called a <discrete random variable>, if its set of possible outcomes it countable.
Definition. Continuous Random Variable
A random variable is called a <continuous random variable>, if its set of possible outcomes it uncountable.
์ฆ, Random Variable์ ์น์ญ์ Cardinality์ ๋ฐ๋ผ โDiscreteโ์ด๋ โContinuousโ๊ฐ ๋๋๋ค.
Probability Distribution
Discrete Prability Distribution
A discrete random variable assumes each of its values with a certain probability.
์ ๋ฆฌํ๋ฉด, Discrete RV $X$๊ฐ ๊ฐ์ง ์ ์๋ ์ด๋ค ๊ฐ $x$์ ๋ํด, ๊ทธ๊ฒ์ ๋์๋๋ ํ๋ฅ $P(X = x)$๊ฐ ์ด๋ค ๊ฐ์ผ๋ก ์ ํด์ง๋ค๋ ๋ง์. ๊ทธ๋ฆฌ๊ณ ์ด๊ฑธ $f(x)$์ ํํ๋ก ํํํ ๊ฒ์ด ๋ฐ๋ก <Probability Distribution>์.
Definition. Probability Mass Function; Probability Distribution
The set of ordered pairs $(x, f(x))$ is a <probability function>, <probability mass function>, or <probability distribution> of the discrete RV $X$, if for each possible outcome $x$,
- \[f(x) \ge 0\]
- \[\sum_x f(x) = 1\]
- \[P(X = x) = f(x)\]
์์ ๊ฐ์ probability function $f(x)$๋ RV $X$๊ฐ $x$์์ ๊ฐ๋ <ํ๋ฅ probability>์ ์ถ๋ ฅํด์ค๋ค.
Definition. Cumulative Distribution Function for Discrete RV
The <cumulative distribution function> $F(x)$ of a discrete RV $X$ with probability distribution $f(x)$ is
\[F(x) = P(X \le x) = \sum_{t \le x} f(t), \quad \mbox{for} - \infty < x < \infty\]๊ฐ์ธ์ ์ผ๋ก PMF์ $\sum$์ ํ๊ฑฐ๋ผ ๋ช ์นญ์ด CMF๊ฐ ๋์ผ ํ์ง ์๋ ์ถ์๋๋ฐ, ๊ต์ฌ์ โCMFโ๋ ์ฉ์ด๋ ์กด์ฌํ์ง ์์๋ค. ์ฆ, <Cumulative Distribution Function>, ์ด๊ฒ ๋ง๋ ํํ์ด๋ค.
์์ ๋ด์ฉ์ ๋ฏธ๋ฆฌ ์คํฌํ์๋ฉด, <Discrete RV>์ <Continuous RV>์์์ CDF๋ ๋ค๋ฅด๊ฒ ํํ๋๋ค.
1. CDF $F(x)$ of a discrete RV $X$ with probability distribution $f(x)$
\[F(x) = P(X \le x) = \sum_{t \le x} f(t)\]2. CDF $F(x)$ of a continuous RV $X$ with density function $f(x)$
\[F(x) = P(X \le x) = \int^{x}_{-\infty} f(t) \; dt\]Continuous Prability Distribution
In Continuous RV, we assign a probability of 0 to the event. And its probability distribution cannot be given in tabular form. (ํ๋ฅ ๋ถํฌ๋ฅผ ํ๋ก ์ ์ ์ ์๋ค.) However, it can be stated as a formula $f(x)$. We call that formula as a <probability density function>!
Definition. Probability Density Function
The function $f(x)$ is a <Probability Density Function> (PDF) for the continuous RV $X$, defined over the set of real numbers, if
- \[f(x) > 0, \quad \mbox{for all } x \in R\]
- \[\int^{\infty}_{-\infty} f(x) \; dx = 1\]
- \[P(a < X < b) = \int^b_a f(x) \; dx\]
Definition. Cumulative Distribution Function for Continuous RV
The <cumulative distribution function> $F(x)$ of a continuuous RV $X$ with density function $f(x)$ is
\[F(x) = P(X \le x) = \int^x_{-\infty} f(t) \; dt, \quad - \infty < x < \infty\]Continuous RV์์์ CDF๋ ์ ๋ถ์ผ๋ก ์ ์๋๊ธฐ ๋๋ฌธ์ CDF $F(x)$๋ฅผ ํตํด PDF $f(x)$๋ฅผ ์ป์ ์ ์๋ค!!!
\[f(x) = \frac{dF(x)}{dx}\](๋จ, $F(x)$์ derivative๊ฐ ์กด์ฌํด์ผ ํ๋ค.)
์ง๊ธ๊น์ง๋ ํ๋์ <Random Variable>์ด $X$ ํ๋์ธ ์ํฉ์ ๋ค๋ค๋ค๋ฉด, ์ด์ด์ง๋ ๋ด์ฉ์์ <Random Variable>์ด $X$, $Y$ ๋ ๊ฐ์ธ ์ํฉ์ ๋ค๋ฃฌ๋ค! ์ด๊ฒ์ <Joint Probability Distribution>์ด๋ผ๊ณ ํ๋ค!