โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

6 minute read

โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

Random Variable


Definition. Random Variable

A <random variable> is a function from $S$ to $\mathbb{R}$ s.t.

\[X: S \longmapsto \mathbb{R}\]

Random Variable์„ ํ‘œํ˜„ํ•˜๋Š” ๊ทœ์น™์œผ๋กœ๋Š”

  • Random Variable์€ ๋Œ€๋ฌธ์ž๋กœ ํ‘œ๊ธฐํ•œ๋‹ค. $X$, $Y$, $Z$
  • ์†Œ๋ฌธ์ž $x$๋Š” Random Variable์ด ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ๊ฐ’(= ์น˜์—ญ์˜ ๊ฐ’) ์ค‘ ํ•˜๋‚˜๋ฅผ ์˜๋ฏธํ•œ๋‹ค.


๋งŒ์•ฝ Random Variable $X$๊ฐ€ 0, 1 ๋‘˜ ์ค‘ ํ•˜๋‚˜๋ฅผ ํƒํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™์ด ๋‘ ๊ฐ’ ์ค‘ ํ•˜๋‚˜๋ฅผ ์ทจํ•˜๋Š” function์ด๋ผ๋ฉด, ์ด๊ฒƒ์„ <Bernoulli Random Variable>์ด๋ผ๊ณ  ํ•œ๋‹ค.


Discrete vs. Continuous


Definition. Discrete Sample Space

If a sample space $S$ contains a finite or an unending sequence of possibilities, it is called a <discrete sample space>.


Definition. Continuous Sample Space

If a sample space $S$ contains an infinite number of possibilities or equal to the number of points on a line segment, it is called a <continuous sample space>.

์ฆ‰, Sample Space $S$์˜ Cardinality์— ๋”ฐ๋ผ โ€œDiscreteโ€์ด๋ƒ โ€œContinuousโ€๊ฐ€ ๋‚˜๋‰œ๋‹ค.



Definition. Discrete Random Variable

A random variable is called a <discrete random variable>, if its set of possible outcomes it countable.


Definition. Continuous Random Variable

A random variable is called a <continuous random variable>, if its set of possible outcomes it uncountable.

์ฆ‰, Random Variable์˜ ์น˜์—ญ์˜ Cardinality์— ๋”ฐ๋ผ โ€œDiscreteโ€์ด๋ƒ โ€œContinuousโ€๊ฐ€ ๋‚˜๋‰œ๋‹ค.


Probability Distribution

Discrete Prability Distribution

A discrete random variable assumes each of its values with a certain probability.

์ •๋ฆฌํ•˜๋ฉด, Discrete RV $X$๊ฐ€ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ์–ด๋–ค ๊ฐ’ $x$์— ๋Œ€ํ•ด, ๊ทธ๊ฒƒ์— ๋Œ€์‘๋˜๋Š” ํ™•๋ฅ  $P(X = x)$๊ฐ€ ์–ด๋–ค ๊ฐ’์œผ๋กœ ์ •ํ•ด์ง„๋‹ค๋Š” ๋ง์ž„. ๊ทธ๋ฆฌ๊ณ  ์ด๊ฑธ $f(x)$์˜ ํ˜•ํƒœ๋กœ ํ‘œํ˜„ํ•œ ๊ฒƒ์ด ๋ฐ”๋กœ <Probability Distribution>์ž„.


Definition. Probability Mass Function; Probability Distribution

The set of ordered pairs $(x, f(x))$ is a <probability function>, <probability mass function>, or <probability distribution> of the discrete RV $X$, if for each possible outcome $x$,

  1. \[f(x) \ge 0\]
  2. \[\sum_x f(x) = 1\]
  3. \[P(X = x) = f(x)\]

์œ„์™€ ๊ฐ™์€ probability function $f(x)$๋Š” RV $X$๊ฐ€ $x$์—์„œ ๊ฐ–๋Š” <ํ™•๋ฅ  probability>์„ ์ถœ๋ ฅํ•ด์ค€๋‹ค.


Definition. Cumulative Distribution Function for Discrete RV

The <cumulative distribution function> $F(x)$ of a discrete RV $X$ with probability distribution $f(x)$ is

\[F(x) = P(X \le x) = \sum_{t \le x} f(t), \quad \mbox{for} - \infty < x < \infty\]

๊ฐœ์ธ์ ์œผ๋กœ PMF์— $\sum$์„ ํ•œ๊ฑฐ๋ผ ๋ช…์นญ์ด CMF๊ฐ€ ๋˜์•ผ ํ•˜์ง€ ์•Š๋‚˜ ์‹ถ์—ˆ๋Š”๋ฐ, ๊ต์žฌ์— โ€œCMFโ€๋ž€ ์šฉ์–ด๋Š” ์กด์žฌํ•˜์ง€ ์•Š์•˜๋‹ค. ์ฆ‰, <Cumulative Distribution Function>, ์ด๊ฒŒ ๋งž๋Š” ํ‘œํ˜„์ด๋‹ค.

์•ž์˜ ๋‚ด์šฉ์„ ๋ฏธ๋ฆฌ ์Šคํฌํ•˜์ž๋ฉด, <Discrete RV>์™€ <Continuous RV>์—์„œ์˜ CDF๋Š” ๋‹ค๋ฅด๊ฒŒ ํ‘œํ˜„๋œ๋‹ค.

1. CDF $F(x)$ of a discrete RV $X$ with probability distribution $f(x)$

\[F(x) = P(X \le x) = \sum_{t \le x} f(t)\]

2. CDF $F(x)$ of a continuous RV $X$ with density function $f(x)$

\[F(x) = P(X \le x) = \int^{x}_{-\infty} f(t) \; dt\]

Continuous Prability Distribution

In Continuous RV, we assign a probability of 0 to the event. And its probability distribution cannot be given in tabular form. (ํ™•๋ฅ  ๋ถ„ํฌ๋ฅผ ํ‘œ๋กœ ์ ์„ ์ˆ˜ ์—†๋‹ค.) However, it can be stated as a formula $f(x)$. We call that formula as a <probability density function>!


Definition. Probability Density Function

The function $f(x)$ is a <Probability Density Function> (PDF) for the continuous RV $X$, defined over the set of real numbers, if

  1. \[f(x) > 0, \quad \mbox{for all } x \in R\]
  2. \[\int^{\infty}_{-\infty} f(x) \; dx = 1\]
  3. \[P(a < X < b) = \int^b_a f(x) \; dx\]


Definition. Cumulative Distribution Function for Continuous RV

The <cumulative distribution function> $F(x)$ of a continuuous RV $X$ with density function $f(x)$ is

\[F(x) = P(X \le x) = \int^x_{-\infty} f(t) \; dt, \quad - \infty < x < \infty\]

Continuous RV์—์„œ์˜ CDF๋Š” ์ ๋ถ„์œผ๋กœ ์ •์˜๋˜๊ธฐ ๋•Œ๋ฌธ์— CDF $F(x)$๋ฅผ ํ†ตํ•ด PDF $f(x)$๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค!!!

\[f(x) = \frac{dF(x)}{dx}\]

(๋‹จ, $F(x)$์˜ derivative๊ฐ€ ์กด์žฌํ•ด์•ผ ํ•œ๋‹ค.)


์ง€๊ธˆ๊นŒ์ง€๋Š” ํ•˜๋‚˜์˜ <Random Variable>์ด $X$ ํ•˜๋‚˜์ธ ์ƒํ™ฉ์„ ๋‹ค๋ค˜๋‹ค๋ฉด, ์ด์–ด์ง€๋Š” ๋‚ด์šฉ์—์„  <Random Variable>์ด $X$, $Y$ ๋‘ ๊ฐœ์ธ ์ƒํ™ฉ์„ ๋‹ค๋ฃฌ๋‹ค! ์ด๊ฒƒ์„ <Joint Probability Distribution>์ด๋ผ๊ณ  ํ•œ๋‹ค!

๐Ÿ‘‰ Joint Probability Distribution