β€œν™•λ₯ κ³Ό 톡계(MATH230)” μˆ˜μ—…μ—μ„œ 배운 것과 κ³΅λΆ€ν•œ 것을 μ •λ¦¬ν•œ ν¬μŠ€νŠΈμž…λ‹ˆλ‹€. 전체 ν¬μŠ€νŠΈλŠ” Probability and Statisticsμ—μ„œ ν™•μΈν•˜μ‹€ 수 μžˆμŠ΅λ‹ˆλ‹€ 🎲

7 minute read

β€œν™•λ₯ κ³Ό 톡계(MATH230)” μˆ˜μ—…μ—μ„œ 배운 것과 κ³΅λΆ€ν•œ 것을 μ •λ¦¬ν•œ ν¬μŠ€νŠΈμž…λ‹ˆλ‹€. 전체 ν¬μŠ€νŠΈλŠ” Probability and Statisticsμ—μ„œ ν™•μΈν•˜μ‹€ 수 μžˆμŠ΅λ‹ˆλ‹€ 🎲

Joint Probability Distribution

μ•žμ—μ„œλŠ” ν•˜λ‚˜μ˜ RV에 λŒ€ν•œ probability distribution을 μ‚΄νŽ΄λ³΄μ•˜λ‹€. ν•˜μ§€λ§Œ, ν˜„μ‹€μ—μ„œλŠ” λ‘˜ μ΄μƒμ˜ RV에 λŒ€ν•œ κ²°κ³Όλ₯Ό λ™μ‹œμ— κ³ λ €ν•΄μ•Ό ν•˜λŠ” κ²½μš°κ°€ λ§Žλ‹€. <Joint Probability Distribution>은 이런 λ‘˜ μ΄μƒμ˜ RVλ₯Ό μˆ˜ν•™μ μœΌλ‘œ μ •μ˜ν•œ κ°œλ…μ΄λ‹€.

Joint ProbabilityλŠ” Discrete RV와 Continuous RVμ—μ„œ 각각 <Joint pmf>, <Joint pdf>둜 μ •μ˜λœλ‹€.


Definition. Joint pmf

The function $f(x, y)$ is a <joint probability distribution> or <joint pmf> of the discrete RV $X$ and $Y$ if

  1. $f(x, y) \ge 0$ for all $(x, y)$.
  2. $\displaystyle \sum_x \sum_y f(x, y) = 1$
  3. $P(X=x, Y=y) = f(x, y)$

Also, for any region $A$ in the $xy$ plane, $\displaystyle P[(X, Y) \in A] = \sum \sum_A f(x, y)$


Definition. Joint pdf

The function $f(x, y)$ is a <joint density function> of the continuous RV $X$ and $Y$ if

  1. $f(x, y) \ge 0$, for all $(x, y)$.
  2. $\displaystyle \int^\infty_\infty \int^\infty_\infty f(x, y) \; dx dy = 1$
  3. $\displaystyle P[(X, Y) \in A] = \int \int_A f(x, y) \; dx dy$, for any region $A$ in the $xy$ plane.

Marginal Distribution


Definition. Marginal Distribution

The <marginal distributions> of $X$ alone and of $Y$ alone are

\[g(x) = \sum_y f(x, y) \quad \text{and} \quad h(y) = \sum_x f(x, y)\]

for the discrete case, and

\[g(x) = \int^\infty_{-\infty} f(x, y) \; dy \quad \text{and} \quad h(y) = \int^\infty_{-\infty} f(x, y) \; dx\]

for the continuous case.

보좩: <Discrete RV에 λŒ€ν•œ Marginal Distribution>은 κ·Έ 바탕에 <Law of Total Probability>κ°€ κΉ”λ €μžˆλ‹€!

Conditional Probability Distribution

μ•žμ—μ„œ <Conditional Probability> $P(Y \mid X)$에 λŒ€ν•΄ λ‹€λ€˜λ‹€. ν•˜μ§€λ§Œ, μš°λ¦¬λŠ” 이 <Conditional Probability>에 λŒ€ν•œ 계산을 쒀더 효율적으둜 κ³„μ‚°ν•˜κΈ° μœ„ν•΄ μ•„λž˜μ™€ 같이 RV $X$, $Y$에 λŒ€ν•œ Probability Distribution으둜 μœ λ„ν•  수 μžˆλ‹€!

\[P(Y = y \mid X = x) = \frac{P(X=x, Y=y)}{P(X=x)} = \frac{f(x, y)}{f_{X} (x)}, \quad \text{provided} \; f_X (x) > 0\]

μœ„μ™€ 같이 <Conditional Probability>λ₯Ό β€œλΆ„ν¬(Distribution)β€μ˜ ν˜•νƒœλ‘œ κΈ°μˆ ν•œ 것을 <Conditional Probability Distribution>라고 ν•œλ‹€!


Definition. Conditional Probability Distribution

Let $X$ and $Y$ be two random variables, discrete or continuous. The <conditional distribution of the RV $Y$ given that $X = x$> is

\[f(y \mid x) = \frac{f(x, y)}{f_X (x)}, \quad \text{provided} \; f_X (x) > 0\]

Similarly, the <conditional distribution of the RV $X$ given that $Y=y$> is

\[f(x \mid y) = \frac{f(x, y)}{f_Y (y)}, \quad \text{provided} \; f_Y (y) > 0\]

Statistical Independence

<Conditional Probability>μ—μ„œ μ •μ˜ν•œ <Independent Event>의 κ°œλ…μ„ <Conditional Probability Distribution>μ—μ„œλ„ μ μš©ν•΄λ³Ό 수 μžˆλ‹€!!


Definition. Statistical Independence

Let $X$ and $Y$ be two RVs, discrete or continuous, with joint probability distribution $f(x, y)$ and marginal distributions $f_X (x)$ and $f_Y (y)$, respectively.

The RVs $X$ and $Y$ are said to be <statistically independent> if and only if

\[f(x, y) = f_X (x) f_Y (y)\]

for all $(x, y)$ within their range.

λ˜λŠ” μ΄λ ‡κ²Œ 생각해볼 μˆ˜λ„ μžˆλ‹€. λ§Œμ•½ conditional distribution $f(x \mid y)$κ°€ $y\;$에 dependent ν•˜μ§€ μ•Šλ‹€λ©΄ κ·ΈλŸ¬λ‹ˆκΉŒ independent ν•˜λ‹€λ©΄, λ‹Ήμ—°νžˆ $f(x \mid y)$λŠ” $y\;$의 결과에 μ•„λ¬΄λŸ° 영ν–₯을 받지 μ•Šμ•„μ•Ό ν•  것이닀. 그러기 μœ„ν•΄μ„œλŠ” $f(x \mid y)$μ—μ„œ $y$에 λŒ€ν•œ 텀이 μ‘΄μž¬ν•˜μ§€ μ•Šμ•„μ•Ό ν•œλ‹€!

즉, $\dfrac{f(x, y)}{f_Y (y)}$μ—μ„œ $y\;$에 λŒ€ν•œ 텀이 λͺ¨λ‘ μ†Œκ±° λœλ‹€λŠ” 말이닀. 이λ₯Ό λ‹€μ‹œ 바라보면, $f(x, y)$μ—μ„œ $f_Y (y)$둜 $y$ 텀을 μ™„μ „νžˆ 뢄리할 수 μžˆλ‹€λŠ” 말이닀.

\[f(x, y) = f_Y (y) \cdot g(x)\]

그런데 λ˜‘κ°™μ€ μž‘μ—…μ„ $f(y \mid x)$에 μˆ˜ν–‰ν•΄λ³΄λ©΄, μ΄λ²ˆμ—λŠ” $f(x, y) = f_X (x) \cdot h(y)$κ°€ λ‚˜μ˜¨λ‹€. κ·Έλž˜μ„œ 이 두 κ²°κ³Όλ₯Ό 잘 μ‘°ν•©ν•˜λ©΄, <독립>에 λŒ€ν•΄ μœ„μ™€ 같이 <marginal distribution>의 곱이 <probability distribution>이닀라고 μ •μ˜ν•˜λŠ” 것이 μžμ—°μŠ€λŸ¬μš΄ 것이닀! πŸ˜†


이것을 $N$개의 random variable에 λŒ€ν•΄ μΌλ°˜ν™”ν•˜λ©΄ μ•„λž˜μ™€ κ°™λ‹€.


Definition. mutually statistical independence

Let $X_1, X_2, \dots, X_n$ be $n$ random variables, discrete or continuous, with joint probability distribution $f(x_1, x_2, \dots, x_n)$ and marginal distribution $f_1(x_1), f_2(x_2), \dots, f_n (x_n)$, respectively. The random variables $X_1, X_2, \dots, X_n$ are said to be <mutually statistically independent> if and only if

\[f(x_1, x_2, \dots, x_n) = f_1(x_1) f_2(x_2) \cdots f_n (x_n)\]

for all $(x_1, x_2, \dots, x_n)$ within their range.


<Marginal Distribution>에 λŒ€ν•œ λ‹€μŒμ˜ 문제λ₯Ό λ‹΅ν•΄λ³΄μž.

Q. We know the marginal pmfs $f_X (x)$ and $f_Y (y)$, can you find the joint pmf $f(x, y)$?



Example.

Let $(X, Y)$ have joint pdf

\[f(x, y) = \begin{cases} 1 && (x, y) \in [0,1] \times [0, 1] \\ 0 && \text{otherwise} \end{cases}\]

(a) Are $X$ and $Y$ independent?

(b) Let $Z := \max (X, Y)$. Find the distribution of $Z$. (Hint: Find cdf of $Z$)

(c) Let $W := \min (X, Y)$. Find the distribution of $W$. (Hint: Find cdf of $W$)


이번 νŒŒνŠΈμ—μ„  <Joint Probability>λ₯Ό κ΅¬ν•˜κΈ° μœ„ν•΄ 적뢄을 쑰금 ν•΄μ•Ό ν–ˆλ‹€. ν•˜μ§€λ§Œ, κ·Έλ ‡κ²Œ μ–΄λ €μš΄ 적뢄은 μ•„λ‹ˆκΈ° λ•Œλ¬Έμ— λͺ‡λ²ˆλ§Œ μ—°μŠ΅ν•˜λ©΄ 금방 μ΅μˆ™ν•΄μ§„λ‹€!! 😊

μ΄μ–΄μ§€λŠ” ν¬μŠ€νŠΈμ—μ„œλŠ” RV의 ν™•λ₯ μ„ μ΄μš©ν•΄ <평균>, <λΆ„μ‚°>, <곡뢄산>을 μœ λ„ν•΄λ³Έλ‹€!

πŸ‘‰ Mean, Variance, and Covariance