โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

8 minute read

โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

Poisson Process

์ด๋ฒˆ์—๋Š” BP์—์„œ ๊ทนํ•œ์„ ์ทจํ•ด time interval์˜ ๊ฐ„๊ฒฉ์„ ์•„์ฃผ์•„์ฃผ ์ค„์ธ, ๊ทธ๋ž˜์„œ ๊ฒฐ๊ตญ continuousํ•œ ์‹œ๊ฐ„์ถ• ์œ„์—์„œ ์‹œํ–‰๋˜๋Š” <Poisson Process>์— ๋Œ€ํ•ด ์‚ดํŽด๋ณด์ž. ์•„๋ž˜์— ๊ธฐ์ˆ ๋˜๋Š” ๋‚ด์šฉ์€ ์•„๋ž˜์˜ ์œ ํŠœ๋ธŒ ์˜์ƒ์„ ๊ธฐ์ค€์œผ๋กœ ์ž‘์„ฑํ•˜์˜€๋‹ค.

๐Ÿ‘‰ YouTube - Definition of the Poisson Process


๋จผ์ € $N(t)$ ๋˜๋Š” $N_t$๋ฅผ ์ •์˜ํ•˜์ž. ์ด๊ฒƒ์€ $t$์‹œ๊ฐ„๊นŒ์ง€ ๋„์ฐฉํ•œ ์‚ฌ๊ฑด์˜ ๊ฐฏ์ˆ˜๋ฅผ ์˜๋ฏธํ•˜๋Š” RV์ด๋‹ค. BP์—์„œ์˜ ์„ฑ์งˆ๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ <Poisson Process>๋ฅผ ์ž˜ ์ •์˜ํ•ด๋ณด์ž.

1. ๊ฐ time slot์€ ์„œ๋กœ ๋…๋ฆฝ์ด๋‹ค.

Poisson Process๋„ ์ด ์„ฑ์งˆ์„ ๊ฐ€์ง€๋ฏ€๋กœ, ์•„๋ž˜์˜ ๋ช…์ œ๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค.

โ€# of arrivals in disjoint time inteverals are independent.โ€

์ด๊ฒƒ์„ ์ˆ˜์‹์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\left( N(t_2) - N(t_1) \right) \perp \left( N(t_4) - N(t_3) \right)\]

2. (Time homogeneity) ๊ฐ time slot์—์„œ arrival์ด ๋ฐœ์ƒํ•  ํ™•๋ฅ ์ด ๋™์ผํ•˜๋‹ค.

๋งˆ์ฐฌ๊ฐ€์ง€๋กœ BP์—์„œ ๊ฐ time slot๋งˆ๋‹ค ๋ชจ๋‘ ํ™•๋ฅ  $p$๋ฅผ ๊ฐ€์กŒ๊ธฐ ๋•Œ๋ฌธ์— Poission Process๋„ ์ด ์„ฑ์งˆ์„ ๊ฐ€์ง„๋‹ค. ์ด๊ฒƒ์„ ๊ธฐ์ˆ ํ•˜๋ฉด,

โ€œ$P(k, \tau)$, the prob. of $k$ arrivals in interval of duration $\tau$ is constantโ€

๊ทธ๋ฆฌ๊ณ  $P(k, \tau)$์— ๋Œ€ํ•ด ์ด๊ฒƒ์„ $k$์— ๋Œ€ํ•ด ๋ชจ๋‘ ๋”ํ•˜๋ฉด, ๊ทธ ํ™•๋ฅ ์˜ ๅˆ์€ 1์ด ๋œ๋‹ค.

\[\sum^{\infty}_{k=0} P(k, \tau) = 1\]

์ˆ˜์—…์—์„  ์ด๊ฑธ ์กฐ๊ธˆ ๋‹ค๋ฅด๊ฒŒ ๊ธฐ์ˆ ํ•œ ๊ฒƒ ๊ฐ™๋‹ค. โ€œThe distribution of $N(t) - N(s)$ only depends on $(t-s)$โ€

\[N(t) - N(s) = N(t-s)\]

3. small interval probability

โ€œ๋‘ arrival์ด ๋™์ผํ•œ ์‹œ๊ฐ„์— ๋™์‹œ์— ๋ฐœ์ƒํ–ˆ๋‹ค.โ€ ์ด๋Ÿฐ ๊ฒฝ์šฐ๋ฅผ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ์„๊นŒ? ํ˜„์‹ค์—์„œ๋„ ์ด๋Ÿฐ โ€œSame Time, Same place, Same Eventโ€๊ฐ€ ์ผ์–ด๋‚˜๋Š” ๊ฑด ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. Poission Process๋Š” ์ด๋Ÿฐ ๋™์‹œ์— ๋ฐœ์ƒํ•˜๋Š” ์‚ฌ๊ฑด์„ ์—†์• ๊ธฐ ์œ„ํ•ด ์•„์ฃผ ์ž‘์€ interval $\delta$์— ๋Œ€ํ•ด ์•„๋ž˜์™€ ๊ฐ™์ด ์ •์˜ํ•œ๋‹ค.

\[P(k, \delta) \approx \begin{cases} 1 - \lambda \delta & \text{if} \quad k=0 \\ \lambda \delta & \text{if} \quad k=1 \\ 0 & \text{if} \quad k > 1 \end{cases}\]

์ •๋ฆฌํ•˜๋ฉด, ์œ„์™€ ๊ฐ™์€ 3๊ฐ€์ง€ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•œ๋‹ค๋ฉด ์šฐ๋ฆฌ๋Š” ๊ทธ ๊ณผ์ •์„ <Poisson Process>๋ผ๊ณ  ํ•œ๋‹ค!


์ž ๊น ๋‹ค์‹œ <Bernoulli Process>์˜ ์‹œ๊ฐ์œผ๋กœ ๋Œ์•„์™€๋ณด์ž. $[0, t]$ ๊ฐ„๊ฒฉ์„ ๊ฐ€์ง€๋Š” ํ™•๋ฅ  ๋ณ€์ˆ˜ $X$๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•˜์ž. ๊ทธ๋Ÿฌ๋ฉด, ์ด๊ฒƒ์˜ ํ™•๋ฅ ์€

\[\begin{cases} P(X = 1) = \lambda t + o(h) \\ P(X = 0) = 1 - \lambda t + o(h) \end{cases}\]

์ด๋•Œ $X_i$๋ฅผ โ€œ# of buses that arrive in $[t_i, t_{i+1}]$โ€๋ผ๊ณ  ์ •์˜ํ•œ๋‹ค๋ฉด, $X_i$์— ๋Œ€ํ•œ ๋ถ„ํฌ๋Š” Bernoulli Distribution์„ ๋”ฐ๋ฅธ๋‹ค.

\[\begin{cases} P(X = 1) = \lambda \cdot \dfrac{t}{n} + o(h) \\ P(X = 0) = 1 - \lambda \cdot \dfrac{t}{n} + o(h) \end{cases}\] \[X_i \sim \text{Bernoulli}\left( \frac{\lambda t}{n} \right)\]

์ด๋•Œ, $N(t) = X_1 + \cdots + X_n$๋กœ ๋‘”๋‹ค๋ฉด, $N(t)$๋Š” Binomial Distribution $\text{BIN}(n, \lambda t/n)$์„ ๋”ฐ๋ฅด๊ฒŒ ๋œ๋‹ค.

\[X_1 + \cdots + X_n = N(t) \sim \text{BIN}(n, \lambda t/n)\]

์ด๋•Œ, ์šฐ๋ฆฌ๊ฐ€ $n \rightarrow \infty$๋กœ ๋ณด๋‚ด๊ณ  $[t_i, t_{i+1}] \rightarrow 0$๊ฐ€ ๋œ๋‹ค๋ฉด, ์•ž์—์„œ ์–ธ๊ธ‰ํ•œ <Law of Rare event>์— ์˜ํ•ด Binomial Distribution์ด Poisson Distribution์ด ๋œ๋‹ค.

\[\text{BIN}(n, \lambda t/n) \approx \text{POI}(\lambda t)\]

์ •๋ฆฌํ•˜๋ฉด, $N(t)$๋ฅผ ๋ชจ์€ sequence $\{ N(t) : t \ge 0\}$๋Š” <Poisson Process>๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ฐœ๋ณ„ $N(t)$๋Š” <Poission Distribution>์„ ๋”ฐ๋ฅธ๋‹ค. ๐Ÿคฉ

\[N(t) \sim \text{POI}(\lambda t)\]

1st Arrival

Let $T$ be the time that the 1st bus arrives. What is the distribution of $T$? (We know that the average arrival time is $\lambda$)

์ฃผ์˜ํ•  ์ ์€ ์•ž์—์„œ ์‚ดํŽด๋ณธ <Geometric Distribution>์ฒ˜๋Ÿผ 1st event case๋ฅผ ๊ตฌํ•˜๋Š” ๋ฌธ์ œ์ด์ง€๋งŒ, Sample Space๊ฐ€ ์ด์‚ฐ์ด ์•„๋‹ˆ๋ผ ์—ฐ์†์ธ time axis๋ผ๋Š” ์ ์ด๋‹ค!!

๋จผ์ € cdf $P(T \le t)$๋ฅผ ๊ตฌํ•ด๋ณด์ž. $P(T \le t)$๋ฅผ ์ง์ ‘ ๊ตฌํ•˜์ง€ ๋ง๊ณ , ๋ฐ˜๋Œ€ ์ผ€์ด์Šค์ธ $P(T > t)$๋ฅผ ์ด์šฉํ•ด ์œ ๋„ํ•ด๋ณด์ž.

$P(T > t)$, ์ฆ‰ ๊ธฐ๋‹ค๋ฆฌ๋Š” ์‹œ๊ฐ„ $T$๊ฐ€ $t$๋ณด๋‹ค ์ปค์งˆ ํ™•๋ฅ ์€ ๊ณง $t$ ์‹œ๊ฐ„๊นŒ์ง€ ๋„์ฐฉํ•œ ๋ฒ„์Šค์˜ ์ˆ˜๊ฐ€ 0์ด ๋  ํ™•๋ฅ ๊ณผ ๊ฐ™๋‹ค. ์ฆ‰, $N(t) = 0$์˜ ํ™•๋ฅ ๊ณผ ๊ฐ™๋‹ค. ๋”ฐ๋ผ์„œ,

\[P(T > t) = P(N(t) = 0) = e^{-\lambda t} \frac{(\lambda t)^0}{0!} = e^{-\lambda t}\]

๋”ฐ๋ผ์„œ, $P(T \le t) = 1 - e^{-\lambda}$์ด๊ณ , ์ด๊ฒƒ์€ cdf ํ•จ์ˆ˜์ด๋‹ค. ์ด๊ฑธ ๋ฏธ๋ถ„ํ•˜๋ฉด pdf $f(t)$๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.

\[f(t) = \frac{d}{dt} P(T \le t) = \frac{d}{dt} (1 - e^{-\lambda t}) = \lambda \cdot e^{-\lambda t}\]

์™€์šฐ! ์—ฐ์† ํ•จ์ˆ˜์ธ Exponential Distribution์ด ๋“ฑ์žฅ ํ–ˆ๋‹ค ใ…Žใ…Ž

n-th Arrival

$n$๊ฐœ ๋ฒ„์Šค๊ฐ€ ๋„์ฐฉํ•˜๋Š” ์ˆœ๊ฐ„์ธ $T_n$์˜ ๋ถ„ํฌ๋„ ์ƒ๊ฐํ•ด๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

\[\begin{aligned} P(T_n > t) = P(N(t) < n - 1) \end{aligned}\]

์ด๋•Œ, $N(t) \sim \text{POI}(\lambda t)$์ด๋ฏ€๋กœ,

\[\begin{aligned} P(N(t) < n - 1) &= \sum^{n-1}_{k=0} P(N(t) = k) \\ &= \sum^{n-1}_{k=0} e^{-\lambda t} \frac{(\lambda t)^k}{k!} \end{aligned}\]

์œ„์˜ ์‹์„ ํ†ตํ•ด $T_n$์˜ cdf๋ฅผ ์•Œ๊ณ  ์žˆ์œผ๋‹ˆ, ์ด๊ฒƒ์„ ๋ฏธ๋ถ„ํ•ด $T_n$์˜ pdf๋ฅผ ์œ ๋„ํ•ด๋ณด์ž.

\[\begin{aligned} f(t) = \frac{d}{dt} P(T_n \le t) &= - \frac{d}{dt} P(T_n > t) \\ &= - \left( \sum^{n-1}_{k=0} (-\lambda) e^{-\lambda t} \frac{(\lambda t)^k}{k!} + \sum^{n-1}_{k=1} \lambda e^{-\lambda t} \frac{(\lambda t)^{(k-1)}}{(k-1)!}\right) \\ &= \lambda e^{-\lambda t} \cdot \left( \sum^{n-1}_{k=0} \frac{(\lambda t)^k}{k!} - \sum^{n-1}_{k=1} \frac{(\lambda t)^{(k-1)}}{(k-1)!} \right) \\ &= \lambda e^{-\lambda t} \frac{(\lambda t)^{(n-1)}}{(n-1)!} \\ &= \frac{\lambda^n}{(n-1)!} \cdot t^{n-1} e^{-\lambda t} \\ &= \frac{\lambda^n}{\Gamma(n)} \cdot t^{n-1} e^{-\lambda t} \\ &= \frac{1}{\Gamma(n) \beta^n} \cdot t^{n-1} e^{-t/\beta} \\ &= C_{n, \beta} \cdot t^{n-1} e^{-t/\beta} \\ &= f(x; n, \beta) \end{aligned}\]

์ฆ‰, $T_n \sim \text{Gamma}(n, \beta)$์ด๋‹ค. $\blacksquare$

์™€์šฐ ๊ฐ๋งˆ ๋ถ„ํฌ๊ฐ€ ๋“ฑ์žฅ ํ–ˆ๋‹ค ใ…Žใ…Ž ์‚ฌ์‹ค ๋ณ„๋กœ ๋†€๋ž์ง€ ์•Š์€ ๊ฒƒ์ด $n$๊ฐœ์˜ ๋…๋ฆฝ๋œ ์ง€์ˆ˜ ๋ถ„ํฌ๋ฅผ ๋ชจ์œผ๋ฉด ๊ฐ๋งˆ ๋ถ„ํฌ๋ฅผ ์œ ๋„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๊ฐ ๋ฒ„์Šค๊ฐ€ ๋„์ฐฉํ•˜๋Š” ์‚ฌ๊ฑด์€ ๋…๋ฆฝ์ ์œผ๋กœ ๋ฐœ์ƒํ•˜๊ณ , $n$๋ฒˆ์งธ ๋ฒ„์Šค๊ฐ€ ๋„์ฐฉํ•˜๋Š” ๊ณผ์ •๋„ ๋…๋ฆฝ์ ์ธ $n$๊ฐœ ์ง€์ˆ˜ ๋ถ„ํฌ๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋™์ผํ•œ ์ƒํ™ฉ์œผ๋กœ ์ดํ•ดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋งบ์Œ๋ง

ํ™•๋ฅ ๋ก ์—๋Š” ์ด๊ฒƒ ๋ง๊ณ ๋„ ๋” ๋‹ค์–‘ํ•œ โ€œ๋žœ๋ค ํ”„๋กœ์„ธ์Šคโ€๊ฐ€ ์กด์žฌ ํ•ฉ๋‹ˆ๋‹ค. ๋” ๋งŽ์€ ๋‚ด์šฉ์€ ์•„๋ž˜์˜ ํฌ์ŠคํŠธ๋“ค์„ ๋ฐฉ๋ฌธํ•ด๋ด…์‹œ๋‹ค ใ…Žใ…Ž