โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

6 minute read

โ€œํ™•๋ฅ ๊ณผ ํ†ต๊ณ„(MATH230)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Probability and Statistics์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

Theorem.

Let $X$ and $Y$ be independent RVs.

1. Discrete Case

If $X$ and $Y$ are discrete with pmfs $f_X(x)$ and $f_Y(y)$,

then $X+Y$ has the pmf

\[f_{X+Y} (z) = \sum_u f_X(u) f_Y (z-u)\]


2. Continuous Case

If $X$ and $Y$ are continuous with pdfs $f_X(x)$ and $f_Y(y)$,

then $X+Y$ has the pdf

\[f_{X+Y}(z) = \int_u f_X(u) f_Y(z-u) du\]

[2]๋ฒˆ ๋ช…์ œ์˜ ๊ฒฝ์šฐ, ์ฆ๋ช…ํ•˜๋ ค๋ฉด ์ƒ๋‹นํ•œ ์—„๋ฐ€์„ฑ์ด ์š”๊ตฌ๋œ๋‹ค๊ณ  ์ •๊ทœ ์ˆ˜์—…์—์„œ๋Š” [2]๋ฒˆ์— ๋Œ€ํ•œ ์ฆ๋ช…์„ ๋‹ค๋ฃจ์ง„ ์•Š์•˜๋‹ค.

Proof. [1]

\[\begin{aligned} U &= X \\ V &= X + Y \end{aligned}\] \[f_{U, V} (u, v) = f_{X, Y} (u, v-u) = f_X(u) f_Y(v-u)\]

๋”ฐ๋ผ์„œ,

\[f_V (v) = \sum_u f_{U, V} (u, v) = \sum_u f_X(u) f_Y(v-u)\]

$\blacksquare$


Example.

Let $X \sim \text{Gamma}(n, \beta)$, $Y \sim \text{Gamma}(m, \beta)$, and $X \perp Y$.

Find the pdf of $X+Y$.

\[\begin{aligned} f_{X+Y} (Z) &= \int_u f_X (u) f_Y (z-u) \, du \\ &= \frac{1}{\Gamma(n) \cdot \beta^n} \frac{1}{\Gamma(m) \cdot \beta^m} \cdot \int^{\cancelto{z}{\infty}}_0 u^{n-1} e^{-u/\beta} \cdot (z-u)^{m-1} e^{-(z-u))/\beta} \, du \qquad (z - u > 0)\\ &= \frac{1}{\Gamma(n) \cdot \beta^n} \frac{1}{\Gamma(m) \cdot \beta^m} \cdot \int^z_0 u^{n-1} (z-u)^{m-1} \cdot e^{-z/\beta} \, du \\ &= \frac{1}{\Gamma(n) \cdot \beta^n} \frac{1}{\Gamma(m) \cdot \beta^m} \cdot e^{-z/\beta} \cdot \int^z_0 u^{n-1} (z-u)^{m-1} \, du \\ \end{aligned}\]

์ด๋•Œ, $u = zy$๋กœ ์น˜ํ™˜์ ๋ถ„ํ•ด๋ณด์ž.

\[\begin{aligned} f_{X+Y} (Z) &= \frac{1}{\Gamma(n) \cdot \beta^n} \frac{1}{\Gamma(m) \cdot \beta^m} \cdot e^{-z/\beta} \cdot \int^z_0 u^{n-1} (z-u)^{m-1} \, du \\ &= \frac{1}{\Gamma(n) \cdot \beta^n} \frac{1}{\Gamma(m) \cdot \beta^m} \cdot e^{-z/\beta} \cdot \int^1_0 (zy)^{n-1} (z-zy)^{m-1} \, z dy \\ &= \frac{1}{\Gamma(n) \cdot \beta^n} \frac{1}{\Gamma(m) \cdot \beta^m} \cdot e^{-z/\beta} \cdot z^{n-1} z^{m-1} z \cdot \int^1_0 y^{n-1} (1-y)^{m-1} \, dy\\ &= \frac{1}{\Gamma(n) \cdot \beta^n} \frac{1}{\Gamma(m) \cdot \beta^m} \cdot e^{-z/\beta} \cdot z^{n+m-1} B(n, m) \\ &= \frac{1}{\cancel{\Gamma(n)} \cdot \beta^n} \frac{1}{\cancel{\Gamma(m)} \cdot \beta^m} \cdot e^{-z/\beta} \cdot z^{n-m-1} \frac{\cancel{\Gamma(n)} \cancel{\Gamma(m)}}{\Gamma(n+m)} \\ &= \frac{1}{\Gamma(n+m) \beta^{n+m}} \cdot z^{n+m - 1} e^{-z\beta} \end{aligned}\]

๋”ฐ๋ผ์„œ, $X+Y \sim \text{Gamma}(n+m, \, \beta)$์ธ ๊ฒƒ์ด๋‹ค! $\blacksquare$

์œ„์˜ ์˜ˆ์ œ๋ฅผ ํ™œ์šฉํ•˜๋ฉด, $\text{Gamma}(n, \beta)$๊ฐ€ $\text{Exp}(\beta)$์˜ generalization์ž„์„ ์‰ฝ๊ฒŒ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

Let $X_1, \dots, X_n$ follows $\text{Exp}(\beta)$ and they are mutually independent.

We know $\text{Gamma}(1, \beta) = \text{Exp}(\beta)$.

Therefore,

\[(X_1 + \cdots + X_n) \sim \text{Gamma}(n, \beta)\]

not 1-1 Transform

$y = g(X)$ and $g$ is not 1-1

Example.

Let $X$ be a discrete RV with $P(X=0) = P(X=2) = P(X=-2) = 1/3$.

Let $Y := X^2$. Find $f_Y(y)$.

Since $Y = X^2$, $Y = \{ 0, 4\}$

๋”ฐ๋ผ์„œ,

(1) If $y=4$, then $x=2$ or $x=-2$

\[P(Y = 4) = P(X^2 = 4) = P(X=2) + P(X = -2) = \sum_{x: g(x)=4} f_X (x) = 2/3\]

(2) If $y=0$, then $x=0$

\[P(Y = 0) = P(X^2 = 0) = P(X=0) = \sum_{x: g(x) = 0} f_X (x) = 1/3\]


Example.

Let $X \sim N(0, 1)$. Find the pdf of $Y := X^2$.

\[\begin{aligned} P(Y \le y) &= P(X^2 \le y) \\ &= P(-\sqrt{y} \le X \le \sqrt{y}) \\ &= P(X \le \sqrt{y}) - P(X \le -\sqrt{y}) \\ &= F_X (\sqrt{y}) - F_X (-\sqrt{y}) \end{aligned}\]

์œ„์˜ cdf ์‹์—์„œ pdf๋ฅผ ์œ ๋„ํ•ด๋ณด๋ฉด,

\[\begin{aligned} f_Y(y) &= \frac{d}{dy} P(Y \le y) \\ &= \frac{d}{dy} F_X (\sqrt{y}) - \frac{d}{dy} F_X (-\sqrt{y}) \\ &= f_X (\sqrt{y}) \frac{1}{2\sqrt{y}} + f_X (-\sqrt{y}) \frac{1}{2\sqrt{y}} \\ &= \frac{1}{\sqrt{y}} \cdot f_X (\sqrt{y}) \qquad (\text{$f_X$๊ฐ€ ์šฐํ•จ์ˆ˜}) \end{aligned}\]


Theorem.

Supp. $X$ has pmf or pdf $f_X (x)$.

Let $Y = g(X)$ where $g$ may not be 1-1.

Assume that the support for $f_X(x)$ can be partitioned into $k$ segments s.t., in each segment, $x_i = w_i(y)$ is 1-1 for $i=1, \dots, k$.

Then,

(1) when $X$ is discrete, $\displaystyle f_Y (y) = \sum^k_{i=1} f_X (w_i (y))$

(2) when $X$ ic continuous, $\displaystyle f_Y (y) = \sum^k_{i=1} f_X (w_i(y)) \cdot \left| wโ€™_i (y) \right|$


์ด์–ด์ง€๋Š” ํฌ์ŠคํŠธ์—์„œ๋Š” RV์˜ momentum์ธ $E[X]$, $E[X^2]$๋ฅผ ์ƒ์„ฑํ•˜๋Š” ํ•จ์ˆ˜์ธ <MGF; Momemtum Generating Function>์— ๋Œ€ํ•ด ๋‹ค๋ฃฌ๋‹ค. ๐Ÿคฉ

๐Ÿ‘‰ Momemtum Generating Function