Choice of Sample Size for Testing Mean
βνλ₯ κ³Ό ν΅κ³(MATH230)β μμ μμ λ°°μ΄ κ²κ³Ό 곡λΆν κ²μ μ 리ν ν¬μ€νΈμ λλ€. μ 체 ν¬μ€νΈλ Probability and Statisticsμμ νμΈνμ€ μ μμ΅λλ€ π²
Choice of Sample Size
μ€μ μμλ μ€ν(experiment)λ₯Ό μννκΈ° μ μ μ£Όμ΄μ§ significance level $\alpha$ μλμμ μ μ ν κ²μ λ ₯μ κ°λ sample sizeλ₯Ό 미리 μ€μ ν νμ μ€νμ μννλ€! μ΄ κ³Όμ μ data-taking process μ΄μ μ΄λΌλ©΄, λ°.λ.μ. μνν΄μΌ νλ κ³Όμ μ΄λ€!
μ’μ κ²μ λ ₯μ μ»κΈ° μν΄ μννλ βμνμ μβλ₯Ό κ²°μ νλ κ³Όμ μ $\alpha$ κ°κ³Ό $H_1: \mu = \mu_1$μ κ°μ κ³ μ νκ³ μννλ€.
μ΄λ, <κ²μ λ ₯>μ μλμ κ°λ€.
\[1 - \beta = P(\text{rejeect} \; H_0 \mid H_1 \; \text{is true})= P(\bar{X} > a \;\; \text{when} \;\; \mu = \mu_0 + \delta)\]μ΄λ, $\beta$λ T2 Errorλ€!!
1. Set Hypothesis
- $H_0$: $\mu=190$ (cm)
- $H_1$: $\mu=195$ (cm)
2. we want
- $\alpha = 0.05$
- $1 - \beta \ge 0.9$
3. Evaluate T1 Error
\[\begin{aligned} \alpha &= P(\text{rejeect} \; H_0 \mid \mu = 190) \\ &= P \left( \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} > z_{\alpha} \right) \\ \end{aligned}\]μμ μμ μ΄λ€ $n$μ μ ννλλΌλ νμ μ°ΈμΈ λͺ μ λ€!
4. Evaluate T2 Error
$1 - \beta$ = (power at $\mu = \mu_1$) $\ge 0.9$.
\[1 - \beta = P \left( \text{reject}\; H_0 \mid \mu = \mu_1 \right) = P \left( \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} > z_{\alpha} \mid \mu = \mu_1 \right) \ge 0.9\]Now, letβs find $n$ which guarantees the eq. of (3) and (4).
\[\begin{aligned} P \left( \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} < z_{\alpha} \mid \mu = \mu_1 \right) &\le \beta \\ P \left( \frac{\bar{X} - \mu_1 + \mu_1 - \mu_0}{\sigma/\sqrt{n}} < z_{\alpha} \mid \mu = \mu_1 \right) &\le \beta \\ P \left( z < z_{\alpha} - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} \right) &\le \beta \end{aligned}\]μ΄λ, $\mu_1 > \mu_0$ and $n$ is large,
\[z_{\alpha} - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} < 0\]More specifically,
\[z_{\alpha} - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} = - z_{\beta}\]Then, if we solve the above inequality, then we get a inequality for sample size $n$!
\[n \ge \left( \frac{(z_\alpha + z_\beta) \sigma }{\mu_1 - \mu_0} \right)^2\]κ΅μ¬μμλ μμ μν©μ μλμ κ·Έλ¦Όμ²λΌ νννκ³ μλ€!
π₯ (two-sided case) If $H_1$ is a form of $H_1: \mu \ne \mu_0$ at the level $\alpha$, and we want the power at $\mu = \mu_1$ to be at least $1 - \beta$?
μ΄ κ²½μ°μλ μμ΄
\[n \ge \left( \frac{(z_{\alpha/2} + z_\beta) \sigma }{\mu_1 - \mu_0} \right)^2\]κ° λλ€!
μ΄μ΄μ§λ ν¬μ€νΈμμλ <Proportion>κ³Ό <Variance>μ κ²μ μ λν΄ μ΄ν΄λ³Έλ€!! π
π Proportion Test π Variance Test